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Abstract— If the variance are unequal among systems, it
is reasonable to allocate samples unequally in ranking and
selection procedures. In this paper, we propose two procedures
allocating samples according to sample mean and variance
information, namely the known variance adaptive sampling
(KVAS) procedure and the unknown variance adaptive sam-
pling (UVAS) procedure. Our procedure can reduce total
sample size and still guarantee a pre-determined probability
of correct selection. The experiment results show that (1)our
proposed KVAS can reduce sample size nearly 20% compared
with known variance unequal sample size procedure KVP
provided in [12]; (2) our proposed UVAS can reduce total
sample size between 30% and 50% compared with equal sample
size procedure KN provided in [15] and unequal sample size
procedure UVP provided in [12].

I. INTRODUCTION

Ranking and selection (R&S) problem is to choose a
system with largest or smallest mean value from a set
of systems by simulation. There are two general kinds of
approaches to solve R&S problem: a frequentist approach(see
[2] for a summary) and a Bayesian approach. The key
difference between these two approaches is that frequentist
approach guarantees to select the best system with a pre-
determined probability of correct selection and Bayesian
approach devotes to maximize the posterior probability of
correct selection given a finite computation budget by the
art of allocation samples (see [6], [5], [4], [11],[3], [8], [7]as
examples). Most frequentist approach procedures adopt the
indifference-zone formulation proposed by [1]. If the differ-
ence between two systems is smaller than indifference-zone
parameter δ , choosing any of these two systems are a good
selection. Typical procedures are the two-stage procedure of
[18] and the fully sequential procedure KN of [15]. Recently,
[10] proposed a indifference-zone free procedure to relax this
assumption. Our proposed procedures belong to frequentist
approach and adopt the indifference-zone parameter.

Another difference between the two approaches concerns
the sample size allocation. For Bayesian approach, pro-
cedures always allocate different number of observations
to systems to maximize probability of correct selection.
However, for frequentist approach, procedures always use
vector-filling method, for example [18]. [16] procedure and
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KN procedure. Early works in this stream of research
consider equal variance or known variance cases (see for
example [17] and [9]) and the focus is to improve the
effectiveness of procedures. Thus, compared with Bayesian
approach, frequentist procedure requires more observations
because systems with larger variance need more samples to
estimate sample mean. [19], [13] are among the early works
that consider unequal sample size procedure. For unequal
sample size procedure, the first question is how to allocate
observations to different systems. In order to obtain the
statistical validity, the sampling rule can only depends on the
differences between systems. Otherwise, we no longer have
the Brownian motion approximation property, which is criti-
cal for the proof of statistical validity. However, [14] showed
that if sampling rule depended on sample mean information,
it still performed well in the view of probability of correct
selection. [12] considered Known-variance procedure and
Unknown-variance procedure that allocate different number
of observations to different system based on the relationship
of variance. He show that the sampling rule should satisfy

n1

σ1
=

n2

σ2
= · · ·= nk

σk
.

The procedure he proposed is the first one that can not only
guarantee finite-time statistically valid but also implement
unequal sample size. He proved that unequal sample size pro-
cedure reduces total sample significantly compared with KN
by simulation. However, for the case of unknown variance
case, his method adopted the triangular boundary proposed
by [17] which is inferior to the boundary of [9]. Although
according to his numerical study, using [9]’s boundary still
can select the best system with satisfactory probability, the
statistical validity can not be obtained theoretically.

Through these retrospect, we found that: 1. unequal sample
size procedure is better than equal sample size procedure;
2. generally, using unequal sample size method can still
insure the validity; 3. if the sampling rule depends on
mean information, even though it is hard to have theoretical
proof of statistical validity, it still works well in numerical.
Motivated by these findings, we present a new adaptive
sampling rule which depends not only on variance but also
on mean information. For known variance scenario, we can
prove the statistical validity in finite-time. For unknown
variance, we prove that we can still choose the best system
with required probability asymptotically if the indifference-
zone parameter δ goes to 0 and sample size goes to infinity.
Sampling rule in [13] and [12] could be regarded as a special
case of our method in some sense. We discuss this in section
2.1.



Our contribution are: 1. the first procedure of which
sampling rule depends on both mean and variance infor-
mation; 2. our unknown variance procedure can update
sample variance continuously; 3. we prove the statistical
validity in finite-time(known variance case) and asymptot-
ically(unknown variance case).

In this paper, we present our procedure and sampling
rule in Section 2. To improve performance, we present two
procedures for both known and unknown variance cases.
When discuss sampling rule, we use slippage configura-
tion case as an illustration. Then we extend it to general
configuration. In Section 3, we prove that our construction
can be approximate by a standard Brownian motion process
with a drift. In Section 4, we prove the statistical validity.
A comprehensive numerical study is presented in Section
5 to check the validity and effectiveness. In Section 6, we
conclude our paper.

II. PROCEDURE

Our aim is to choose the system with the largest mean
value from several systems. Without loss of generality, we
assume that there are k systems and µ1− δ ≥ µ2 ≥ ·· · ≥
µk, where δ is the indifference-zone parameter. Each system
is normally distributed with mean µi and variance σ2

i . Any
two systems are bivariate normal. Denote the lth sample of
system i as Xil . Xil , for l = 1,2, . . . , are independent and
identically distributed. Sample mean and variance are X̄i and
S2

i for system i.
In procedure KVAS, we assume systems variance are

known before running the procedure but they could be differ-
ent among systems. Compared with other procedure like KN,
the most significant modification is that this is not a vector-
filling procedure any more, which means sample size among
different systems could be unequal. Briefly, the relationship
between sample size of each system relies on their sample
variance, which is described in detail in section II-A. This
allows the procedure to be more efficient by utilizing the
information of sample variance. What is more, this procedure
is different with other unequal sample size procedure such
as UVP in [12] in the view of sampling rule. UVP consider
the sample size proportion relationship between any two
systems. However, we solve an optimization problem which
takes all the systems into consideration.
PROCEDURE 1 (KNOWN VARIANCE ADAPTIVE SAMPLING
(KVAS) PROCEDURE)

Step 1. Setup. Select overall confidence level 0< 1−α < 1
and indifference zone parameter δ . Let I = {1,2, ...,k} be
the original set of systems. Obtain one observation for each
system i. Set counter r = k. Calculate a by solving the
following equation:

a1 =−
1
δ

log[2−2(1−α)
1

k−1 ]

Step 2. Comparison. For all the system i still in con-
tending, allocate the next observation by the sampling rule
described in section II-A. Update mean value and let r =

r+1. Set Iold = I. Let

I = Iold \{i : i ∈ Iold and Zli(tli)≥max{0,a1−
δ

2
tli}

∀l ∈ Iold , l 6= i}

Step 3. Stopping Rule. If |I = 1|, stop and select the system
whose index is in I as the best. Otherwise, go back to
Comparison.

In procedure UVAS, we relax the restriction about vari-
ance. It is unknown to the experimenter and also could
be unequal. Because the variance is unknown, we change
the construction of the means difference sequence and the
triangular region boundary in order to insure the statistical
validity. To estimate sample variance, we need an initial
stage in which we take n0 samples for each system. Another
notable modification is that sample variance could be updated
during the procedure. As it is known to all, updating sample
variance can improve not only the effectiveness but also the
accuracy.

PROCEDURE 2 (UNKNOWN VARIANCE ADAPTIVE SAM-
PLING (UVAS) PROCEDURE)

Step 1. Setup Select n0 ≥ 2, overall confidence level
0 < 1 − α < 1 and indifference zone parameter δ . Let
I = {1,2, ...,k} be the original set of systems. Obtain n0
observations Xi j, j = 1,2, ...,n0, for each system i. Calculate
sample variance S2

i and sample mean X̄i(n0) for each system.
Calculate a by solving the following equation:

a2 =− log[2−2(1−α)
1

k−1 ]

Step 2. Comparison. For all the systems still in contending,
allocate the next observation by the sampling rule described
in section II-A. If the observation is allocated to system i,
update mean value and variance of each system and let ni =
ni +1. Set Iold = I. Let

I = Iold \{i : i ∈ Iold and Yli(τli)≥max{0,a2/δ −δτli/2}
∀l ∈ Iold , l 6= i}.

Step 3. Stopping Rule. If |I = 1|, stop and select the system
whose index is in I as the best. Otherwise, go back to
Comparison.

A. Sampling Rule

1) Slippage Configuration: In this section, we present the
sampling rule with slippage configuration and unequal vari-
ance case and its derivation process. In summary, we work
out the optimal relationship between system by minimizing
total sample size needed by the procedure. Denote ni as the
sample size needed by system i, for i = 1,2, . . . ,k. Without
loss of generality, we assume that µ1−δ = µ2 = · · ·= µk−1 =
µk. The first exit time for Bµ1−µi(t) to leave the triangular
region is t1i. To minimize the total sample size, we have the
optimization function below.



minn1 +n2 + · · ·+nk,

s.t.
[

σ2
1

n1
+

σ2
i

ni

]−1

= t1i, for i = 2,3, . . . ,k.
(II.1)

By the definition of slippage configuration, τ1i = t1 j, for
i, j = 2,3, . . . ,k and i 6= j, we obtain that n j = σ2

j ni/σ2
i . So

the primal problem can be transfered to

min
∑

k
i=2 σ2

i

σ2
1

n2 +n1,

s.t.
[

σ2
1

n1
+

σ2
2

n2

]−1

= t12.

Denote λ as the Lagrange Multiplier. The Lagrange func-
tion is

L(n1,n2,λ ) =
∑

k
i=2 σ2

i

σ2
2

n2 +n1 +λ

(
σ2

1
n1

+
σ2

2
n2
− 1

τ12

)
.

By the first order condition, we have

∂L
∂n1

=
∑

k
i=2 σ2

i

σ2
2
− λσ2

1

n2
1

= 0,

∂L
∂n2

= 1− λσ2
2

n2
2

= 0.

Then we obtain the relationship between the sample size
of each system

ni

σ2
i
=

n j

σ2
j
, for i, j = 2,3, ...,k and i 6= j

n1

σ1
=

√√√√ k

∑
i=2

n2
i

σ2
i
.

(II.2)

To minimize total sample size, during the procedure,
we want to maintain the relationship between system as
described above. So the sampling rule is to allocate the next
sample to the system with smallest ni/σ2

i .
Remark 1: If σ2

1 = σ2
2 = · · · = σ2

k , we have n1 : n2 : · · · :
nk =

√
k−1 : 1 : · · · : 1. This is consistent with the result in

[13].
2) General Configuration: In this section, we consider

general configuration. We do not have any restrictions on
the relationship on mean value. Slippage configuration is a
special case of this. Denote ni as the sample size needed by
system i, for i = 1,2, . . . ,k. Without loss of generality, we
assume that mean value for system i is µi and system 1 is
the best system. The expected first exit time for Bµ1−µi(t) to
leave the triangular region is

τ1i =
a

µ1−µi +λ

.
To minimize the total sample size, we have the optimiza-

tion function below.

min n1 +n2 + · · ·+nk,

s.t.
[

σ2
i

ni
+

σ2
1

n1

]−1

= τ1i, for i = 2,3, . . . ,k.

For any two system i and j, if i 6= j 6= 1, we have

σ2
i

ni
−

σ2
j

n j
=

µ j−µi

a
.

This relationship here is more complicated than the one in
slippage configuration because we not only need to consider
the influence of variance but also pay close attention to mean
value. For unknown variance case, the sampling rule could
be summarized as

1) Sort the systems by sample mean. Denote the system
with largest mean as system b and the system with
second larest mean as system s.

2) In order to insure optimal sample size for each system
is a positive number, calculate the optimal sample size
proportion using system s as a basis.

n′i =


⌈

σ2
i

σ2
s /ns+(X̄s−X̄i)/a

⌉
, for i 6= s and i 6= b⌈√

∑
k
j=1, j 6=b

n2
j σ

2
b

σ2
j

⌉
, for i = b

3) Allocate the next sample to system i still in contention
with smallest ni/n′i. If ni/n′i = n j/n′j, allocate the next
observation to the system with smaller variance. If
ni/n′i = 1 for all system i ∈ I, take one sample for the
system with smallest variance.

Remark 2: If variance are unknown, substitute σ2
i by S2

i .
Also, in our procedure, variance can be updated after taking
one more observation, so in order to exploit the full potential,
we recommend calculate the sampling rule by updating
variance. If there are only two systems, the relationship
should be ni/σi = n j/σ j. This is equivalent to the result in
[12] because [12] considered a minimization problem of total
sample size for any two systems.

III. CONSTRUCTION OF BROWNIAN MOTION PROCESS

In this paper, we consider two different approaches to
construct the approximation of the Brownian motion process
for known and unknown variance scenarios. In Lemma 1, we
proved that for known variance case, the sequences Zi j(ti j)
has the same distribution as a standard Brownian motion
process with drift µi − µ j. When talking about unknown
variance, it is hard to construct the Brownian motion process
in finite time perspective. In Lemma 2, we proved that
sequence Yi j(τi j) has the same distribution as a standard
Brownian motion process with drift ∆ =

√
2a2(µi− µ j)/δ

asymptotically. Denote Bδ (t) as a Brownian motion process
with drift δ .

First, if variance is known, for any two systems i and j,
we construct the sequences

Zi j(ti j) = ti j[X̄i(ni)− X̄ j(n j)]

ti j =

[
σ2

i
ni

+
σ2

j

n j

]−1

where X̄i(ni) =
∑

ni
l=1 Xil

ni
. Although this is an unequal sample

size procedure, if variance is equal, it is equivalent to the
equal sample size procedure. So equal sample size procedure



like KN could be regarded as a special case of this. In the
following Lemma, we prove Zi j(ti j) has the same distribution
as Bµi−µ j(ti j). This proof is similar as Theorem 1 in [12].

Lemma 1: For any two system i and j, the random non-
decreasing sequence Zi j(ti j) has the same distribution with
Bµi−µi(ti j).

Proof: In order to prove the random non-decreasing
sequence Zi j(ti j) has the same distribution with Bµi−µi(ti j),
recall that

1) Bµi−µi(0) = 0;
2) For any 0< tp < · · ·< tq <∞, Bµi−µi(tp), . . . ,Bµi−µi(tq)

are jointly normally distributed;
3) For any 0 < ti j < ∞, E[Bµi−µi(ti j)] = ti j(µi− µi), and

Var[Bµi−µi(ti j)] = ti j.
4) for 0 < ui j < vi j < +∞,

Cov(Bµi−µi(ui j),Bµi−µic(vi j)) = ui j.

By the definition of Zi j(ti j), we have Zi j(0)= 0. Since Zi j(ti j)
are linear function of jointly normal random variables, they
are jointly normally distributed. Then

E[Zi j(ti j)] = ti j (µi−µ j) ,Var [Zi j(ti j)] = ti j.

With these two properties, it suffices to prove that
Cov(Bµi−µi(ui j),Bµi−µic(vi j)) = ui j, for 0 < ui j < vi j <+∞.
Without loss of generality, we assume system i and j obtain
m and n samples at time ui j, respectively. System i and j
obtain p and q samples between ui j and vi j, respectively.

Then we can rewrite Zi j(ui j) and Zi j(vi j) as

Zi j(ui j) =

(
σ2

i
m

+
σ2

j

n

)−1

(X̄i(u)− X̄ j(u))

Zi j(vi j) = Zi j(ui j)+

(
σ2

i
p

+
σ2

j

q

)−1

(X̄i(v)− X̄ j(v))

Because sequence Zi j is i.i.d, and a and b are independent.

Since Cov

(
Zi j(ui j),

(
σ2

i
p +

σ2
j

q

)−1

(X̄is(v)− X̄ js(v))

)
= 0, we

have Cov(Zi j(ui j),Zi j(vi j)) = ui j
If variance is unknown, we construct the sequences as

Yi j(τi j) = τi j[X̄i(ni)− X̄ j(n j)]

τi j =

[
S2

i
ni

+
S2

j

n j

]−1

where

X̄i(ni) =
∑

ni
l=1 Xil

ni

S2
i =

1
n0−1

n0

∑
l=1

[Xi j− X̄i(n0)]
2

for i, j = 1,2, ...,k and i 6= j. In this formulation, we no
longer have the properties of variance and covariance. We
need construct a new sequence as described below.

Lemma 2: Under asymptotic condition δ → 0, n0(δ )→
∞, δ 2n0→ 0, and Ỹi j(s) has the same distribution as B∆(s)
asymptotically, where ∆ =

√
2a2(µi−µ j)/δ .

Proof: Denote Ni j as the maximum sample size needed
for the comparison of system i and j for the known variance
scenario. Then for system i and j, we can rewrite the sample
size obtained as ni = bNxisc and n j = bNx jsc, respectively.
Let xi be the proportion of system i and let s be a parameter
in [0,1]. In this procedure, the triangular region boundary
is formed by (−a2/δ + δ ti j/2,a2/δ − δ ti j/2), we have the
maximum time ti j = 2a2/δ 2. Notice that ti j = (σ2

i /ni +
σ2

j /n j)
−1, then the maximum sample size needed by system

i and j could be calculated by Ni j =
2a2(σ

2
i /xi+σ2

j /x j)

δ 2 Define

Ỹi j(s) =

[
s

√
Ni j

σ2
i /xi +σ2

j /x j
(σ2

i /ni +σ
2
j /n j)

]
Yi j(τi j)

Because Ỹi j(s) is a linear function of jointly normal random
variables, they are also jointly normally distributed. Obvi-
ously, Ỹi j(0) = 0. The asymptotic regime is δ → 0, n0(δ )→
∞. Then by the law of large numbers,

σ2
i /ni+σ2

j /n j

S2
i /ni+S2

j/n j
→ 1 with

probability 1. Besides, we can rewrite the means difference
as

[X̄i(ni)− X̄ j(n j)] =
1
ni

ni

∑
l=1

Xil−
1
n j

n j

∑
l=1

X jl

=
1

Nxis

Nxis

∑
l=1

Xil−
1

Nx js

Nx js

∑
l=1

X jl

So we have

Ỹi j(s) = s

√
N

σ2
i /xi +σ2

j /x j

(
1

Nxis

Nxis

∑
l=1

Xil−
1

Nx js

Nx js

∑
l=1

X jl

)

=

√
Ni j

σ2
i /xi +σ2

j /x j

[
σi√
Nxi

1
σi
√

Nxi

Nxis

∑
l=1

(Xil−µi)

−
σ j√
Nx j

1
σ j
√

Nx j

Nx js

∑
l=1

(X jl−µ j)+ s(µi−µ j)

]
=

√
Ni j

σ2
i /xi +σ2

j /x j[
σi√
Nxi

Bi(s)+
σ j√
Nx j

B j(s)+ s(µi−µ j)

]
D
= B(s)+

√
Ni j

σ2
i /xi +σ2

j /x j
s(µi−µ j)

(since Bi(s) and B j(s) are independent)
= B(s)+∆s

where ∆ =
√

2a2(µi−µ j)/δ .
The forth equation is because by Donsker’s Theorem ([21],

Theroem 4.3.2), as δ→ 0, 1
σi
√

Nxi
∑

Nxis
l=1 (Xil−µi) has the same

distribution as a standard Brownian motion process.
So Ỹi j(s) has the same distribution of a standard Brownian

motion process with drift ∆ =
√

2a2(µi− µ j)/δ . This nice
property can help us to design an unequal sample size
procedure for unknown variance case.



IV. STATISTICAL VALIDITY

In this section, we prove the statistical validity of KVAS
and UVAS procedure, that is the procedure can choose the
best system with required probability of correct selection.
For KVAS procedure, because of the nice property, we have
the statistical validity in finite time. However, if variance are
unknown, it is difficult to construct Brownian motion process
approximation. The proof of KVAS achieves asymptotically
statistical validity. At first, we need the following Lemma 3
and 4.

Lemma 3: ([9]) Let Bδ (t) be a Brownian motion with
drift δ > 0. A triangular region Π is formed by [−g(t),g(t)],
where g(t) = a−λ t. Let τ = inf{t : B∆(t) /∈Π}, and ε be the
event {Bδ (τ)<−g(τ)}. If λ = δ/2, then

Pr{ε}= 1
2

e−aδ

Lemma 4: ([13]) Consider Bδ (t) on [0,+∞). Denote Td
as the first time that Bδ (t) falls outside the triangular region
(−g(t),g(t)) and Tc as the first time that Bδ (t) falls out-
side the triangular region observed in discrete time interval
{t1, t2, ...,}. Assume Td <∞ almost surely and ti has the same
conditional distribution, given Bδ (t) = b and Bδ (t) = −b,
then

Pr{Bδ (Td)<−g(t)} ≤ Pr{Bδ (Tc)<−g(t)}.
Recall that we have already proved that the sequence

Zi j(ti j) has the same distribution as Bµi−µ j(ti j). With these
above two lemma, we have the Theorem 1.

Theorem 1: Suppose that Xil , l = 1,2, . . . , are i.i.d. nor-
mally distributed and Xil and X jl are joint normal distributed,
for any i, j ∈ I and i 6= j. If variance are known, procedure
KVAS can choose the best system with probability at least
1−α .

Proof: Denote T 1δ
1l , T 1δ

12 , and T 1δ
13 , as the first time

that sequence Z1i(ti j), Bµ1−µi(ti j) and Bδ (ti j) leave the
continuation region. A wrong selection here means that the
best system is eliminated by inferior systems. At first, we
consider the probability of a wrong selection.

Pr{system i eliminates system 1}
= Pr{Z1i(T 1δ

12 )< 0}
≤ Pr{Bµ1−µi(T

2δ
12 )< 0} by Lemma 4

≤ Pr{Bδ (T
3δ

12 )< 0} since µk−µi ≥ δ

≤ 1
2

e−a1δ by Lemma 3

= 1− (1−α)
1

k−1 by the definition of a1

Assuming there are k systems, a correct selection means
that system 1 is not eliminated by any inferior systems. By

Bonferroni inequality, we have

Pr{choose system 1 as the best system}

=
k

∏
i=2

(1−Pr{system 1 is eliminated by system i})

=
k

∏
i=2

[1− (1− (1−α)
1

k−1 )]

= 1−α.

Now, we prove the asymptotically statistical validity of
UVAS procedure. The difficulty is that the sequence Yi j(τi j)
does not have the same distribution as a Brownian motion
process. We need to define a new sequence Ỹi j(s) as men-
tioned before and this sequence has the same distribution as
B∆(s) asymptotically, where ∆ =

√
2a2

µi−µ j
δ

.

Theorem 2: Suppose that Xil , l = 1,2, . . . , are i.i.d. nor-
mally distributed and Xil and X jl are joint normal distributed,
for any i, j ∈ I and i 6= j. Variance of each system are
unknown. Under asymptotic condition, δ → 0, procedure
UVAS can choose the best system with probability at least
1−α .

Proof: The relationship between Yi j(τi j) and Ỹi j(s) is

Ỹi j(s) = Yi j(τi j)

[
s

√
Ni j

σ2
i /xi +σ2

j /x j
(σ2

i /ni +σ
2
j /n j)

]
.

With the same multiplier, the triangular region boundary can
be rewrite as

(
a2

δ
− δ

2
τi j

)[
s

√
Ni j

σ2
i /xi +σ2

j /x j
(σ2

i /ni +σ
2
j /n j)

]

=
a2

γ
− γ

2

σ2
i /ni +σ2

j /n j

S2
i /ni +S2

j/n j
s

where γ =
√

2a2.

With the asymptotic condition δ → 0, σ2
i /ni+σ2

i /n j

S2
i /ni+S2

i /n j
→ 1.

So comparing Yi j(τi j) to (−a2/δ +δτi j/2,a2/δ −δτi j/2) is
equivalent to compare Ỹi j(s) to (−a2/γ +γs/2,a2/γ−γs/2).

Denote T 1γ

i j as the stopping time at which Yi j(τi j) exits
the continuation region (−a2/δ + δτi j/2,a2/δ − δτi j/2).
Instead of analyzing Yi j(τi j), now consider sequence Ỹi j(s).
Then an incorrect selection means that Ỹ1 j(s) leaves the
new triangular region downward. Denote T 2γ

i j , T 3γ

i j and T 4γ

i j
as the stopping time at which Ỹi j(s), B∆(s), and Bγ(s)
exits the continuation region (−a2/γ + γs/2,a2/γ − γs/2),



respectively. Condition on S2
1 and S2

i , we have

Pr{system i eliminates system 1}
= E[Pr{system i eliminates system 1|S2

1,S
2
i }]

= E[Pr{Y1 j(T
1γ

1 j )< 0}|S2
1,S

2
i ]

= E[Pr{Ỹ1 j(T
2γ

1 j )< 0}|S2
1,S

2
i ]

≤ E[Pr{B∆(T
3γ

1 j )< 0}|S2
1,S

2
i ] by Lemma 2 and 4

≤ E[Pr{Bγ(T
4γ

1 j )< 0}|S2
1,S

2
i ] since µ1−µi ≥ δ

≤ 1
2

e(−a2/γ)γ by Lemma 3

= 1− (1−α)
1

k−1 by the definition of a2

Using the same technique as before, by Bonferroni inequal-
ity, we have

Pr{choose system 1 as the best system}

=
k

∏
i=2

(1−Pr{system 1 is eliminated by system i})

=
k

∏
i=2

[1− (1− (1−α)
1

k−1 )]

= 1−α.

V. NUMERICAL RESULTS

In this section, we present some numerical results. In
this first part, we show the validity of our procedures.
Then compared with KN procedure in [15] and KVP, UVP
in [12]. To check the statistical validity, we use slippage
configuration (SC). In SC, µ1 = µ2 = · · · = µk − δ = 0.
This is the most difficult configuration for selecting the best
because all inferior systems is exactly δ smaller than the
best system. On other hand, to check the effectiveness, we
run monotone-increasing-means configuration (MIM) as an
example configuration. In MIM, µi = iδ , for i = 1,2, . . . ,k.
Also, we examine different configurations of variance: equal
variance configuration (EV), increasing-variance configura-
tion (IV), and decreasing-variance configuration (DV). In EV,
we check two groups of variance, σ2

1 = σ2
2 = · · · = σ2

k = 1
and σ2

1 = σ2
2 = · · · = σ2

k = 10. In IV, σ2
i = i; and in DV,

σ2
i = k− i+1. Other parameters are set as PCS: α = 0.05,

initial sample size for unknown variance cases: n0 = 16,
indifference-zone parameter: δ = 1/

√
16. system number

k = 10 or k = 25. For each experiment, we run 10000 macro-
replications of each procedure and report the average sample
needed (ASN) and PCS.

A. Validity Check

In Section 4, we present the statistical validity of KVAS
and UVAS. Table I reports the ASN and PCS of KVAS
and KVP procedures. The ASN and PCS of KN, UVP and
UVAS are presented in Table II and III. From these three
table, we can see that both procedures can select the best
system with probability 1−α under SC in each group of
variance. As mentioned before, SC is the most difficult mean

configuration. Table IV, V, VI can prove the validity under
MIM configuration. Under MIM, the PCS are all above 0.99,
which is much larger than desired PCS. So the procedure
needs more samples than necessary to insure the PCS. This
is a major shortcoming for indifference-zone assumption,
which is discussed in [20], [10].

TABLE I
ASN AND PCS OF KVAS AND KVP UNDER SC.

KVAS KVP
σ2

i k ASN PCS ASN PCS Redution

1 10 803 0.9649 978 0.9661 17.89%
25 2183 0.9793 2890 0.9648 24.46%

10 10 7976 0.9599 9659 0.9632 17.42%
25 21485 0.9767 28609 0.9654 24.90%

i 10 3549 0.9590 3894 0.9600 8.86%
25 22308 0.9599 24543 0.9584 9.11%

k− i+1 10 5074 0.9671 5760 0.9686 11.91%
25 32899 0.9776 39876 0.9720 17.50%

B. The Effectiveness of KVAS and UVAS

Because KVAS and KVPS are for known variance cases,
and other three procedures are for unknown variance cases,
we discuss the effectiveness of KVAS compared with KVP
and compare UVAS with KN and UVP. Table I and IV
reports the PCS for SC and MIM configuration, respectively.
The reduction is significant for each case. For example, under
SC, σ2

i = 10 and k = 25, the saving is 24.90%, and under
MIM, σ2

i = 10, and k = 25, the reduction is 23.35%.
Reduction of UVAS is much larger than KVAS. The saving

comes from several sources: 1. using unequal sample size;
2. sampling rule based on total sample size minimization
problem; 3. continuously updating variance. By continuously
updating variance, UVAS can nearly achieve the performance
of known variance procedure KVAS. This is much better than

TABLE II
ASN AND PCS OF KN AND UVAS UNDER SC.

KN UVAS
σ2

i k ASN PCS ASN PCS Redution

1 10 1269 0.9607 801 0.9562 36.88%
25 3694 0.9678 2135 0.9694 42.20%

10 10 12425 0.9656 7907 0.9623 36.36%
25 36491 0.9637 21445 0.9721 41.23%

i 10 5216 0.9526 3540 0.9547 32.13%
25 34011 0.9509 22323 0.9588 34.37%

k− i+1 10 8042 0.9685 5067 0.9675 36.99%
25 55512 0.9791 32729 0.9805 41.04%

TABLE III
ASN AND PCS OF UVP AND UVAS UNDER SC.

UVP UVAS
σ2

i k ASN PCS ASN PCS Redution

1 10 1332 0.9759 801 0.9562 39.86%
25 4197 0.9860 2135 0.9694 49.13%

10 10 13034 0.9779 7907 0.9623 39.34%
25 41460 0.9859 21445 0.9721 48.28%

i 10 5259 0.9702 3540 0.9547 32.69%
25 35856 0.9716 22323 0.9588 37.74%

k− i+1 10 7832 0.9802 5067 0.9675 35.30%
25 59019 0.9864 32729 0.9805 44.54%



TABLE IV
ASN AND PCS OF KVP AND KVAS UNDER MIM.

KVP KVAS
k ASN PCS ASN PCS Reduction

1 10 422 0.9948 356 0.9956 15.64%
25 672 0.9982 530 0.9980 21.13%

10 10 4169 0.9953 3460 0.9954 17.01%
25 6680 0.9976 5120 0.9974 23.35%

k 10 3229 0.9947 2822 0.9950 12.60%
25 13491 0.9981 10798 0.9978 19.96%

k− i+1 10 1621 0.9966 1187 0.9940 12.55%
25 3123 0.9974 2683 0.9978 14.09%

TABLE V
ASN AND PCS OF KN AND UVAS UNDER MIM.

KN UVAS
k ASN PCS ASN PCS Reduction

1 10 557 0.9952 392 0.9936 29.62%
25 975 0.9983 703 0.9983 27.90%

10 10 5404 0.9950 3486 0.9922 35.49%
25 8804 0.9979 5186 0.9983 41.09%

i 10 4522 0.9945 2820 0.9950 37.64%
25 19073 0.9977 10858 0.9984 43.07%

k− i+1 10 1440 0.99452 1034 0.9943 28.19%
25 3875 0.9979 2649 0.9972 31.64%

other non updating unknown variance procedures. Mostly,
UVAS can save 30%− 50% compared with KN and UVP.
For example, under MIM, σ2

i = i and k = 25, the saving can
be 43.07% compared with KN procedure. Compared with
UVP, the largest saving is 48.28% for σ2

i = 10, k = 25 and
under SC.

To summarize, reduction proportion of UVAS is larger
than KVAS because compared with other procedures, UVAS
is not only an unequal sample size but also a variance-
updating procedure.

TABLE VI
ASN AND PCS OF UVP AND UVAS UNDER MIM.

UVP UVAS
k ASN PCS ASN PCS Reduction

1 10 586 0.9969 392 0.9936 33.11%
25 1029 0.9992 703 0.9983 31.68%

10 10 5615 0.9955 3486 0.9922 37.92%
25 9593 0.9992 5186 0.9983 45.94%

i 10 4354 0.9959 2820 0.9950 35.23%
25 19340 0.9994 10858 0.9984 43.86%

k− i+1 10 1618 0.9967 1034 0.9943 36.09%
25 4541 0.9989 2649 0.9972 41.66%

VI. CONCLUSION

In this paper, we present two unequal sample size pro-
cedures based on adaptive sampling rule. These procedures
deliver desired probability of correct selection and can re-
duce the total sample size significantly. We also prove the
statistical validity for each procedure. For unknown variance
procedure UVAS, the sample variance can continuously
update, which improve the effectiveness of the procedure.

There are several interesting future work directions. First,
it seems possible to implement our idea in indifference-
zone procedures. Second, now that the numerical study can

support the statistical validity of UVAS, we are interested to
extend the proof in finite-time version.
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