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With the rapid development of computing technology, using parallel computing to solve large-scale ranking-

and-selection (R&S) problems has emerged as an important research topic. However, direct implementation of

traditionally fully sequential procedures in parallel computing environments may encounter various problems.

First, the scheme of all-pairwise comparisons, which is commonly used in fully sequential procedures, has

an O(k2) computational complexity, and significantly slows down the selection process. Second, traditional

fully sequential procedures require frequent communication and coordination among processors, which are

also not efficient in parallel computing environments. In this paper, we propose three modifications on

one classical fully sequential procedure, Paulson’s procedure, to speed up its selection process in parallel

computing environments. First, we show that if no common random numbers (CRNs) are used, we can

reduce the computational complexity of the all-pairwise comparisons at each round to O(k). Second, by

batching different alternatives, we show that we can reduce the communication cost among the processors,

leading the procedure to achieve better performance. Third, to boost the procedure’s final-stage selection,

when the number of surviving alternatives is less than the number of processors, we suggest to sample all

surviving alternatives to the maximal number of observations they should take. We show that after these

modifications, the procedure remains statistically valid, and is more efficient compared with existing parallel

procedures in the literature.
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1. Introduction

In computer simulation, the ranking-and-selection (R&S) problem is to select the best from

a finite set of alternatives, where the best is defined as the alternative with the largest or

smallest mean performance measure. Many R&S procedures have been developed to solve

this type of problems. In general, existing procedures can be classified into two categories,

frequentist procedures and Bayesian procedures. Interested readers may refer to Kim and

Nelson (2006) and Chick (2006) for comprehensive reviews on both theoretical achieve-

ments and procedure designs for these two classes of procedures, as well as Hong et al.

(2015) and Chen et al. (2015) for additional developments in recent years. In this paper,

we take a frequentist point of view to investigate potential issues, from both theoretical

and implementational aspects, as solving large-scale R&S problems in parallel computing

environments.

Under the frequentist framework, R&S procedures are often designed with the aim to

select the true best with a predefined probability of correct selection (PCS) even under the

least favorable configuration of the means. In order to achieve this goal, various procedures,

e.g., either stage-wise procedures of Bechhofer (1954), Rinott (1978), and Nelson et al.

(2001) or fully sequential procedures of Paulson (1964), Kim and Nelson (2001), and Hong

(2006), have been designed in the literature. Stage-wise procedures typically determine

the sample size of each alternative at the beginning of the selection process. Then, the

procedures take all the observations at once and simply pick the alternative with the largest

or smallest sample mean as the best. Meanwhile, fully sequential procedures often proceed

in rounds and sequentially eliminate alternatives upon collecting enough evidence.

When these procedures were first designed, they were used to solve problems with rel-

atively small numbers of alternatives. For instance, the early procedures of Rinott (1978)

and Paulson (1964) were applied to problems with fewer than 20 alternatives, and the

procedures of Nelson et al. (2001) and Kim and Nelson (2001) were used to solve problems

with up to 500 alternatives, as reported in their papers. A critical reason that restricts these

R&S procedures from dealing with large-scale problems is the limited computing power of

* A preliminary version of this paper, i.e., Hong et al. (2016), was published in the Proceedings of the 2016 Winter

Simulation Conference, which investigated only the issue of all-pairwise comparisons for the KN procedure in a

single-processor environment.

� L. Jeff Hong is the corresponding author.
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a single processor. Even though simulating a single observation from each alternative may

be very fast, a R&S procedure needs to simulate all alternatives for many times in order

to obtain meaningful estimations and elimination decisions. As a result, these procedures

are practically only suitable for relatively small-scale problems.

With the rapid development of computing technology, parallel computing environments

are becoming prevalent and ready for ordinary users to access. The fact that R&S proce-

dures “make no attempt to exploit relationships among the solutions” (Hong et al. 2015),

allows the simulation program from different alternatives to be executed independently on

different processors with few synchronizations. It makes parallel computing very attractive

for large-scale R&S problems. In terms of the selection structure, stage-wise procedures are

much simpler and more suitable for parallel computing environments than fully sequential

procedures. For stage-wise procedures, once the sample size of each alternative is deter-

mined, the simulation tasks can be independently executed on different processors without

any synchronizations. After all simulation tasks are finished, the procedures only need to

make one round of sample mean comparisons to select the best. Meanwhile, many existing

works focus on designing parallel fully sequential procedures because they allow early elim-

inations of clearly inferior alternatives and thus require much smaller sample sizes than

stage-wise procedures do. As demonstrated by two recent works of Luo et al. (2015) and Ni

et al. (2017), with the gain on the computing power in parallel computing environments,

the authors can use fully sequential procedures to solve large-scale R&S problems with

more than 20,000 and even up to 106 alternatives. In the meantime, these works also dis-

cover that new issues from both theoretical and implementational aspects appear as one

directly implements fully sequential procedures in parallel computing environments. Some

of these issues can greatly affect the procedures’ performance.

Among them, the most critical one is the high computational complexity of comparisons.

For fully sequential procedures, in order to efficiently eliminate clearly inferior alternatives,

whenever every surviving alternative receives a new observation, the procedures compare

each alternative with all other surviving ones to check whether it may be eliminated or not,

i.e., all-pairwise comparisons. When the problem size, i.e., the number of alternatives, is

relatively small, the computational time of comparisons is often negligible since making a

comparison between two alternatives is very fast. When the problem size is large, however,

the procedures spend a significant amount of time on conducting this type of comparisons,
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because the computational complexity of comparisons increases much faster than that

of simulations and the comparisons cannot be distributed to multiple processors. As the

problem size keeps increasing, the overall comparison time becomes the bottleneck of the

procedures, and it cannot be shortened by leveraging the parallel computing.

Besides the high computational complexity of comparisons, another key issue for parallel

computing is the communication cost. Notice that the essence of parallel computing is

to decompose a big task into small ones and execute them on different processors. While

executing these tasks, the processors need to coordinate with each other and spend time on

communications. Typically, the way to execute the tasks is not unique. One can assign the

small tasks one-by-one to the next available processor (i.e., in a round-robin manner) or

batch the small tasks into a few big ones and then assign. Because the completion time of a

task is often random, assigning a small-size task at a time can help a procedure balance the

workloads of different processors and ensure all processors to finish the tasks at roughly the

same time. However, sequentially assigning a large number of tasks often means frequent

communications among the processors. Therefore, balancing the workloads of different

processors and reducing the frequency of communications are typically conflicting goals

in parallel computing. For parallel fully sequential procedures, while assigning simulation

tasks at each round, one should carefully consider the trade-off between these two goals.

Especially, when the number of alternatives is large, the existing way (see, for example,

Luo and Hong (2011) and Luo et al. (2015)) to assign the simulation tasks one-by-one in

a round-robin manner can lead to a high communication cost. A good task assignment

scheme should reduce the communication cost in this situation.

So far, some efforts have been made to address the aforementioned issues. In the work

of Ni et al. (2017), the authors propose a “divide-and-conquer” approach to reduce the

computational complexity of comparisons. They also suggest simulating a batch of obser-

vations for one alternative at a time to reduce the frequency of communications and thus

the communication cost. By doing so, the authors show that the proposed procedure dra-

matically increases the sizes of solvable problems. However, we want to point out that there

is still much room for improvement because these modifications are made at the expense of

efficiency loss on the total sample size, and the computational complexity of comparisons

in the proposed procedure is still higher than that of simulations.
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In this paper, we choose one classical fully sequential procedure, Paulson’s procedure

(Paulson 1964), and discuss how to extend it to parallel computing environments. We

show that if no common random numbers (CRNs) are used, with a few modifications

on the procedure, we can significantly improve the efficiency of the procedure in parallel

computing environments. First, by rearranging (with slight modifications) the terms in the

comparisons, we can significantly reduce the computational complexity of comparisons to

the same order as that of simulations, while the feature of all-pairwise comparisons remains

intact. Second, by batching of different alternatives (rather than batching of observations

from the same alternative as in Ni et al. (2017)), we can significantly reduce the wall-clock

time without sacrificing the efficiency on the total sample size. Lastly, we propose to sample

all surviving alternatives to the maximal sample size suggested by Paulson’s procedure

when the number of surviving alternatives is less or equal to the number of processors used

to conduct simulations, which can significantly reduce the time spent on a few remaining

alternatives empirically observed by Luo et al. (2015). It is worthwhile noting that the

first two modifications may be applied to other fully sequential procedures, such as the

KN procedure of Kim and Nelson (2001), as well. However, the last modification depends

critically on the structure of Paulson’s procedure, and it is not clear how to extend it to

other fully sequential procedures.

The rest of this paper is organized as follows. In Section 2, we first introduce the for-

mulations of R&S problems and then briefly review the designs of Paulson’s procedure.

In Sections 3, 4, and 5, we propose three major modifications on the original Paulson’s

procedure to make it more suitable for parallel computing environments. In Section 6, we

list the detailed description of our procedure and show that it is statistically valid after we

make these modifications. In Section 7, we numerically compare our procedure with some

existing parallel R&S procedures. We conclude in Section 8.

2. Paulson’s Procedure

In this section, we briefly review one classical fully sequential procedure, Paulson’s proce-

dure in Paulson (1964). It is the building block of our parallel procedure.

2.1. Problem Formulation

We first introduce some standard notations for R&S problems. Let K = {1,2, . . . , k} be

the set of alternatives in contention at the beginning of the selection process. We use
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notation Xi,` to indicate the `th output of simulation replication (observation) from alter-

native i ∈ K. Following the convention in the R&S literature, we assume that for i ∈ K,

{Xi,` : `= 1,2, . . .} are i.i.d. normal random variables with both mean µi and variance σ2
i

unknown. We further assume that the observations generated by different alternatives are

independent as well, i.e., common random numbers (CRNs) are not used in this paper.

We use X̄i(t) to denote the sample average of alternative i based on the first t observa-

tions taken by the alternative. Without loss of generality, we assume that the means are

in ascending order, i.e., µ1 ≤ µ2 ≤ · · · ≤ µk, and alternative k is the best. Notice that with-

out making an assumption on the configuration of the means, the means of the best and

second-best alternatives can be arbitrarily close to each other, leading to a situation where

an infinite number of observations is needed to identify the best. To overcome this issue,

Paulson’s procedure and many other frequentist procedures adopt the indifference-zone

(IZ) formulation. It assumes that there exists a minimal gap between the means of the

best and the second-best alternatives, i.e., µk−1 ≤ µk− δ, where δ > 0 is the user-specified

IZ parameter and the smallest difference worth detecting. Under the IZ formulation, one’s

objective is to design a procedure that can satisfy the probability of correct selection (PCS)

guarantee. It requires the procedure to select the best with probability no less than 1−α

given that the IZ assumption holds, i.e.,

P (select alternative k|µk−µk−1 ≥ δ)≥ 1−α,

where α is a user-specified upper bound on the procedure’s probability of incorrect selection

(PICS).

2.2. The Procedure

For many traditional fully sequential procedures, during the selection process, pairwise

comparisons are conducted between alternatives upon collecting new observations. After

the first-stage sampling whose goal is to estimate the sample variances of all alternatives,

the procedures construct a continuation region for every pair of competing alternatives.

Every time each surviving alternative takes an additional observation, the procedures com-

pare the partial sum difference between any two alternatives with their continuation region,

i.e., all-pairwise comparisons. Once the partial sum difference process exits the predeter-

mined continuation region, one alternative can be eliminated accordingly. The procedures
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stop when only a single alternative is left and choose it as the best. Notice that not all

fully-sequential procedures use such a selection structure. For instance, the Envelope Pro-

cedure of Ma and Henderson (2017) only compares two alternatives based on a certain

criterion at each round and, therefore, avoiding the all-pairwise comparisons.

We provide the detailed description of Paulson’s procedure below. It is worthwhile point-

ing out that the original Paulson’s procedure was designed for the case where all alterna-

tives share a common variance (either known or unknown). However, the procedure can

be extended easily to the more general case of unknown and unequal variances. Therefore,

one may observe some differences between the procedure provided in this paper and the

original one.

Paulson’s Procedure

Step 1. (Input): Select the desired PCS 1−α (0<α< 1− 1/k). Set the IZ parameter

δ > 0, first-stage sample size n0 ≥ 2, and λ (0<λ< δ). Let

h2 =
n0− 1

4 (δ−λ)
×

[(
α

k− 1

)− 2
n0−1

− 1

]
.

Step 2. (Initialization): Let I = {1,2, . . . , k} be the set of alternatives in contention.

For each i ∈ I, simulate n0 observations Xi,1,Xi,2, . . . ,Xi,n0 from alternative i. For all

i 6= j, compute

S2
ij =

1

n0− 1

n0∑
`=1

[
Xi,`−Xj,`−

(
X̄i (n0)− X̄j (n0)

)]2
,

Nij =

⌊
h2S2

ij

λ

⌋
+ 1,

and let

Ni = max
j 6=i

Nij.

Set t= n0.

Step 3. (Screening): Set Iold = I. Let

I =
{
i : i∈ Iold and Zij (t)≥−h2S2

ij +λt,∀j ∈ Iold, j 6= i
}
, (1)

where Zij(t) = t
[
X̄i (t)− X̄j (t)

]
.

Step 4. (Stopping Rule):
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a. If |I|= 1, where |A| denotes the cardinality of a set A, stop and select the alternative

whose index is in I as the best.

b. Else if t= maxi∈INi, stop and select the alternative whose index is in I having the

largest X̄i (t) as the best.

c. Otherwise, take one additional observation Xi,t+1 from each alternative i ∈ I, set

t= t+ 1, and go to Screening.

For the comparison between two alternatives i and j in Paulson’s procedure, the contin-

uation region is triangular in shape (as shown in Figure 1). Two lines g(t) =−h2S2
ij + λt

and −g(t) = h2S2
ij − λt determine the decision boundaries of the continuation region and

{Zij(t) = t[X̄i(t)− X̄j(t)] : t= 1,2, . . .} is the partial sum difference process. The procedure

conducts all-pairwise comparisons by using the screening process in (1). At t= maxi∈KNi

(i.e., the maximum sample size), if there is still more than one surviving alternative in

set I, the procedure simply picks the alternative with the largest sample mean as the

best. For Paulson’s procedure, by changing the input parameter λ, one has the option to

alter the slopes of the decision boundaries and thus the sizes of the continuation regions.

Based on the mean-path analysis of Perng et al. (1969), setting a smaller value for λ, the

procedure can eliminate clearly inferior alternatives faster. However, the ending point of

the continuation becomes larger and the procedure needs more observations to identify the

best alternative in the worst case scenario. Typically, we let λ= δ/2.

Zij (t)

0
t

h2S2
ij

−h2S2
ij

h2S2
ij

λ

Select alternative i

Select alternative j

Figure 1 Continuation region for Paulson’s procedure.
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Besides Paulson’s procedure, the KN procedure (Kim and Nelson 2001) is another well-

known fully sequential procedure. It also has a triangular continuation region and it is

often tighter than that of Paulson’s procedure. Therefore, the KN procedure is often more

efficient in terms of the total sample size than Paulson’s procedure. However, to gain

efficiency, the KN procedure is more rigid in its structure and it is difficult to modify. As

we shall see, in order to improve the efficiency of a fully sequential procedure in parallel

computing environments, we require the procedure to take a batch of observations from

surviving alternatives when the number of surviving alternatives is smaller than that of

the processors. The statistical validity of the KN procedure may fail in this situation.

Therefore, in this paper, we focus on modifying Paulson’s procedure.

3. Speeding Up Pairwise Comparisons

Similar to the works of Luo et al. (2015) and Ni et al. (2017), in this paper, we adopt

the Master/Worker structure for parallel computing. A designated processor is served as

the master. The master controls the whole simulation program, including managing the

information of all alternatives, assigning simulation tasks to and retrieving the simulation

outcomes from the workers, performing all-pairwise comparisons, and other necessary cal-

culations. All other processors are the workers which work in a simple cycle of taking the

simulation task from the master, simulating the observation, and submitting the results

back to the master.

In this section, we first take Paulson’s procedure as an example to show how all-pairwise

comparisons can affect the performance of fully sequential procedures in parallel computing

environments. We then propose a way to address this issue.

3.1. High Computational Complexity of Comparisons

From the descriptions of Paulson’s procedure, it can be seen that, after taking initial n0

observations for every alternative to estimate the variances (Step 2), the procedure iter-

atively conducts all-pairwise comparisons among the alternatives (Step 3) and simulates

new observations for surviving alternatives (Step 4.c) until it finally decides the best.

Typically, simulating an observation takes significantly more time than that of making a

comparison. When the problem size k is not very large and there are not many comparisons

required at each round, the time spent on simulating observations largely determines how

fast a procedure can solve the problem. Therefore, as the first attempt to implement fully
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sequential procedures in parallel computing environments, Luo et al. (2015) essentially

consider to equally distribute the simulation tasks at each round to all workers so that the

overall simulation time can be reduced. By doing so, the authors successfully solve a R&S

problem with more than 20,000 alternatives.

However, for such a direct implementation, as the number of alternatives keeps increas-

ing, the marginal effect of adding more workers to the parallel computing environment

diminishes. The reasons are as follows. At each round, the computational complexity of

simulating observations in Step 4.c is O(k). Meanwhile, the comparisons in Step 3 require

a computational complexity O(k2) since each alternative needs to compare with all other

surviving alternatives. As the number of alternatives k increases, the computational com-

plexity of comparisons increases much faster than that of simulations. Moreover, because

the simulation tasks can be equally distributed to all workers, the overall simulation time

actually grows at the rate of O(k/m) at each round where m is the number of available

workers. As a contrast, due to the nature of all-pairwise comparisons, whenever the proce-

dure checks the elimination condition for one alternative, the sampling information on all

other alternatives is needed. These comparisons are not parallelizable and can only be done

on the master. Therefore, the growth rate of the overall comparison time remains to be

O(k2). As k increases, the comparison time quickly becomes the bottleneck of the procedure

to solve problems and cannot be shortened by adding more workers in the parallel com-

puting environment. One may argue that, in practice, as more and more alternatives are

eliminated, the comparison time decreases dramatically at each round. However, due to the

high computational complexity, even if there is only one round of all-pairwise comparisons

among all k alternatives, as we shall see in the numerical experiments, such comparison

time is no longer negligible.

In the rest of this section, we propose our way to address this issue. We show that if no

CRNs are used, we can reduce the computational complexity of comparisons in Paulson’s

procedure to O(k) at each round, the same order as that of simulations, and this technique

can be potentially extended to other fully sequential procedures. It is interesting to point

out that the use of CRNs in R&S procedures is often for the purpose of introducing

positive correlations among the observations from different alternatives and reducing the

total sample size. To use CRNs, one needs to compute and store the sample variance of

the partial sum difference between any two alternatives and to ensure that the sample
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sizes of any two alternatives in comparisons are the same. This imposes challenges to both

computation and memory management. Therefore, for both aforementioned works, i.e.,

Luo et al. (2015) and Ni et al. (2017), the proposed procedures do not support the use of

CRNs.

3.2. Main Idea

To illustrate our main idea, we first consider a special case where all alternatives share a

common known variance σ2
∗. Then, for Paulson’s procedure, the screening process in (1)

changes to,

I =
{
i : i∈ Iold and Zij (t)≥−2h′2σ2

∗ +λt,∀j ∈ Iold, j 6= i
}
, (2)

where h′ is a constant determined by λ, δ, k, and α, and the first-stage sample variance

S2
ij is replaced by 2σ2

∗ because Var(Xi,`−Xj,`) is known to be 2σ2
∗ in this situation. Since

the right hand side of the inequality in (2) is invariant with the change of the alternatives,

the screening process (2) is equivalent to letting

I =
{
i : i∈ Iold and Zii∗ (t)≥−2h′2σ2

∗ +λt,
}
, (3)

where i∗ = arg maxi∈Iold X̄i(t). It suggests that for the case of a common known variance,

at each round, one does not need to conduct all-pairwise comparisons among the surviving

alternatives; instead one only needs to compare every alternative with alternative i∗, the

alternative with the largest sample mean. For the screening process (3), finding alternative

i∗, requires O(k) operations, and comparing each alternative in set Iold with alternative i∗

requires another O(k) operations. Therefore, at each round, the computational complexity

of the screening process (3) reduces to O(k). Notice that, these modifications do not affect

the procedure’s efficiency on eliminating inferior alternatives. Thus, the total sample size

of the procedure remains unchanged.

This motivates us to think whether there exists an alternative for the case of unknown

and unequal variances that works in the same way as alternative i∗ does for the common

known variance case. To extend this idea, we notice that if no CRNs are used, one can

replace the sample variance S2
ij by S2

i + S2
j where S2

i = 1
n0−1

∑n0

`=1(Xi,` − X̄i(n0))
2 is the

first-stage sample variance of alternative i. Then the screening process (1) can be rewritten

as,

I =
{
i : i∈ Iold and tX̄i (t) +h2S2

i ≥ tX̄j (t)−h2S2
j +λt,∀j ∈ Iold, j 6= i

}
. (4)
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For notational ease, we define,

W+
i (t) = tX̄i (t) +h2S2

i and W−
i (t) = tX̄i (t)−h2S2

i ,

for i= 1,2, . . . , k. Notice that for any fixed alternative i,

{
W+

i (t)≥W−
j (t) +λt,∀j ∈ Iold, j 6= i

}
⇔
{
W+

i (t)≥ max
j∈Iold\{i}

W−
j (t) +λt

}
. (5)

Screening processes (4) and (5) suggest that for the case of unknown and unequal vari-

ances, instead of picking the alternative with the largest sample mean, we can define a

“best” alternative i∗− = arg maxj∈IoldW
−
j (t) based on both sample mean and sample vari-

ance information. Then, all-pairwise comparisons at each round are equivalent to letting

every alternative (expect for alternative i∗−) only compare with the “best” alternative i∗−.

Following the same argument of the common known variance case, one can conclude that

the computational complexity of comparisons also reduces to O(k) under this setting. In

the conference paper of Hong et al. (2016), which is a preliminary version of this paper,

they demonstrate that this technique applies to the KN procedure as well. Notice that,

technically, S2
i + S2

j and S2
ij have different distributions. In Section 6, we prove that this

modification does not change the statistical guarantee of Paulson’s procedure. However,

after the modification, the procedure’s total sample size will be slightly different from that

of the original one.

4. Reducing the Frequency of Communications

Different from the single-processor computing, parallel computing additionally requires

the processors to spend time communicating with each other. Frequent communications

among processors may also delay the selection process.

4.1. One-by-one Task Assignment Scheme

In the existing literature, to simulate observations at each round, a practical way is to let

the master assign the tasks of simulating an observation one-by-one to the next available

worker, i.e., in a round-robin manner. One advantage of this type of task assignment is

that it can finely balance the workloads of different processors. However, frequent commu-

nications are needed in this situation. Typically, to simulate an observation, two rounds of

communications are needed between the master and a worker. The master first assigns the

simulation task to the worker. After simulating the observation, the worker then reports
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Simulate the observation
𝑇2

Wait for the instruction from the master
𝑇1

Send the result back to the master
𝑇3

Master sends the task Master receives the result

Figure 2 The activities inside a worker regarding the simulation of one observation.

the simulation results back to the master. Therefore, in total, 2k rounds of communications

are needed to generate an additional observation from k alternatives at each round.

Figure 2 shows the activities inside a worker regarding the simulation of one observation.

It can be seen that the worker stays idle when it waits for the instruction from the master,

denoted by T1, and the time after it sends the result back to the master, denoted by T3.

Therefore, when the transmission time of sending a message from one processor to another

is relatively long, which is especially true for the case where the master and the worker

are in two different machines and the network latency exists, this task assignment scheme

can lead to high communication cost relative to the total amount computation cost for

simulations. In this situation, assigning the simulation tasks one-by-one in a round-robin

manner may not be an optimal choice. In the following subsection, we propose a batching-

of-alternatives method to reduce the communication frequency between the master and

workers, and thus the communication cost.

4.2. Batching of Alternatives

For parallel computing, an appealing way to reduce the communication cost is batching, i.e.,

sending a batch of simulation tasks to a worker at a time. Typically, there are two ways to

batch the simulation tasks in R&S procedures. One can let a worker either simulate a batch

of observations for one alternative at a time (as in Ni et al. (2017)) or simulate observations

for a batch of alternatives at a time. Notice that the first way of batching can make the

procedure behave more like a stage-wise procedure and may potentially cause a relatively

large amount of efficiency loss on the total sample size. In this paper, we choose the second

way of batching so that the fully sequential selection structure of the procedure can still

be largely maintained. Specifically, at each round, we let the master equally divide the

surviving alternatives into m groups and instruct each worker to perform the simulations

for one group of alternatives (i.e., simulate an additional observation for every alternative

in the group). A worker submits the simulation results back to the master after finishing
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the task. Therefore, at each round, every worker only needs to receive the instruction from

the master and report the results back to the master once. In this situation, the time that

a worker spends on communications is significantly reduced. Moreover, unlike the first way

of batching, batching of alternatives keeps the selection structure of the fully sequential

procedure and does not sacrifice the sample-size efficiency.

Notice that we are not arguing that our batching method is better than the one-by-one

task assignment scheme. Compared with the latter one, there is a drawback of the batching

method. Due to the random completion time of simulating an observation, as the master

sends out all the simulation tasks at once, the workers which finish the tasks earlier always

need to wait for the last one to complete the tasks. It introduces additional idle time on

the workers. In the following subsection, we use a mathematical model to compare the

wall-clock times of simulating k observations as both task assignment schemes are used. We

show that our batching method may be better than the one-by-one task assignment scheme

when transmitting a message takes relatively long time and the number of alternatives is

large.

4.3. One-by-one v.s. Batching

Consider the tasks of simulating k observations. There are one master processor and m

identical workers in the parallel computing environment. In this model, we assume that the

transmission time of a message sent from one processor to another is fixed1 and denoted

by tc. Let Φ`, for `= 1,2, . . . , k, denote the actual time that a worker requires to perform

the simulation of observation `, i.e., T2 in Figure 2. We assume that,

Φ` = θ+ ε`,

where θ is the expected time of simulating an observation, and {ε`} are i.i.d. σ-subgaussian

noise terms (see Definition 4.1 below).

Definition 4.1 A random variable Z is σ-subgaussian if E[Z] = 0, and E[eτZ ] ≤ eτ2σ2/2

holds for all τ > 0.

1 In practice, the transmission time can be additionally affected by the size of the message. Since in our case, the size
of a message is typically very small, we treat the transmission times of the messages with different sizes as the same
in this paper.
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Remark 1. Subgaussian distributions include many commonly used distributions. For

example, the normal distributions and the distributions with bounded supports—uniform

distributions, Bernoulli distributions, etc. One feature of the subgaussian distribution

is that the sum of n i.i.d. σ-subgaussian random variables, Z1,Z2, . . . ,Zn, is a
√
nσ-

subgaussian random variable. This can be simply shown by E
[
eτ(Z1+Z2+···+Zn)

]
≤ enτ2σ2/2.

We further letW1 andW2 denote the wall-clock times of simulating these k observations

as the one-by-one task assignment scheme and our batching method are used respectively.

In the following analysis, we compare the performance of these two task assignment schemes

using the expected values of W1 and W2. In the analysis, without loss of generality, we

assume that k/m is an integer.

For the one-by-one task assignment scheme, to simulate an observation, the master

first sends the task to a worker and after simulating the observation, the worker reports

the results back to the master. While estimating W1, we assume that upon receiving the

simulation results from a worker, the master can immediately send the next task to the

worker. In this situation, the overall time the worker spends on simulating an observation

is 2tc + Φ`, where 2tc represents the idle time that the worker spends on waiting for the

instruction from and reporting the results back to the master. Therefore, to simulate all

k observations, the total time required across all workers is 2ktc +
∑k

`=1 Φ`. Ideally, under

the one-by-one task assignment scheme, this total time can be equally allocated to all m

workers. Thus, we can approximate W1 by,

W1 =
2ktc
m

+

∑k
`=1 Φ`

m
.

For the batching method, the master first equally divides the tasks of simulating k

observations into m groups and assigns each worker one group of observations. During the

implementation, we find that these operations take almost no time. While approximating

W2, we omit the time that the master divides the tasks and assume that the master can send

out all the tasks simultaneously. After time tc, all workers receive the tasks. Every worker

then independently simulates k/m observations as assigned. Let Γs, for s = 1,2, . . . ,m,

denote the actual time that worker s requires to finish simulating k/m observations. For

example, if worker 1 handles the simulations for the first k/m observations, then Γ1 =∑k/m
`=1 Φ`. Then, we can write Γs as,

Γs =
k

m
θ+ Λs,
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where Λs is the sum of k/m i.i.d. σ-subgaussian random variables and is thus a
√
k/mσ-

subgaussian noise term. The simulation process stops after the last worker finishes its tasks

and spends another tc amount of time on transmitting the results to the master. Therefore,

we can approximate the wall-clock time W2 by,

W2 = max
s=1,2,...,m

Γs + 2tc.

In the theorem below, we present the relationship between E[W1] and E[W2] when k is

large.

Theorem 1. If W1 = 2ktc
m

+
∑k
`=1 Φ`
m

and W2 = maxs=1,2,...,mΓs + 2tc, then

lim sup
k→∞

E [W2]

E [W1]
≤ θ

2tc + θ
.

Proof. To prove Theorem 1, we first find an upper bound for E[W2]. Notice that for

E[W2], we have,

E [W2] = E
[

max
s=1,2,...,m

Γs

]
+ 2tc

=
k

m
θ+E

[
max

s=1,2,...,m
Λs

]
+ 2tc. (6)

We focus on analyzing E[maxs=1,2,...,mΛs]. For notational simplicity, we let Mm =

maxs=1,2,...,mΛs. Then, for any τ > 0, by Jensen’s inequality, we have the following result,

eτE[Mm] ≤ E
[
eτMm

]
= E

[
max

s=1,2,...,m
eτΛs

]
≤

m∑
s=1

E
[
eτΛs

]
(7)

Notice that Λs is a
√
k/mσ-subgaussian random variable. By the definition of the subgaus-

sian random variable, we have E
[
eτΛs

]
≤ ekτ2σ2/(2m). Plugging this result into Equation (7),

we can deduce that,

E [Mm]≤ logm

τ
+
kτσ2

2m
. (8)

Letting τ =
√

2m logm
kσ2 , Equation (8) can be rewritten as,

E [Mm]≤ σ
√

2k logm

m
. (9)
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Plugging (9) into (6), then it yields,

E [W2] =
k

m
θ+E

[
max

s=1,2,...,m
Λs

]
+ 2tc ≤

k

m
θ+σ

√
2k logm

m
+ 2tc. (10)

Notice that for E[W1], because {Φ`, `= 1,2, . . . , k} are i.i.d. random variables with mean

θ, one can easily compute that

E [W1] =
k

m
(2tc + θ) . (11)

With the results in equations (10) and (11), we have,

lim sup
k→∞

E [W2]

E [W1]
≤ lim

k→∞

k
m
θ+σ

√
2k logm

m
+ 2tc

k
m

(2tc + θ)
=

θ

2tc + θ
. (12)

It concludes the proof. �

Theorem 1 suggests that, when the number of workers in the parallel computing envi-

ronments is fixed, as long as the transmission takes time and the number of alternatives is

large enough, our batching of alternatives method tends to require smaller wall-clock time

to simulate observations than the one-by-one task assignment scheme does.

However, there are some limitations in the analysis of Theorem 1. First, in Theorem

1, we consider a situation where the number of processors is fixed. In practice, as the

number of alternatives increases, more and more processors may be added to the parallel

computing environments. Then, based on the results of Theorem 1, it is unclear which task

assignment scheme is better. To determine which task assignment scheme should be used

in this situation, while analyzing the wall-clock time of the one-by-one task assignment

scheme in Theorem 1, we assume that master can immediately respond to the message

received from a worker. As pointed out by Luo et al. (2015) and Ni et al. (2017), for

the one-by-one task assignment scheme, when there are a large number of workers in the

parallel computing environments, the master could potentially be overwhelmed with the

frequent incoming messages and take a very long time to send a message back. It may

significantly slow down the selection process. Therefore, we may still choose the batching

method in this situation. Second, according to Equation (12), for the case where tc� θ,

if the number of workers in the parallel computing environments is relatively small (i.e.,

the master would not get overwhelmed for the one-by-one task assignment scheme), the

batching method may never show its theoretically superior performance until k is much
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larger than the problem size that we can encounter in practice. There is no rule of thumb

to determine which method is better in this situation. To practically address this issue,

before the selection starts, one may start an initial stage to estimate the wall-clock time

needed to generate one round of observations for each task assignment scheme and choose

whichever has a smaller wall-clock time. In this paper, because we implement our procedure

in a parallel computing environment with up to 96 processors and the processors can be

spread across different local servers (tc is relatively large), we choose to use the batching

method to allocate observations at each round. Notice that besides Paulson’s procedure,

the batching method may be applied to other fully sequential procedures, e.g., the KN

procedure, as well.

We close this section with a remark that as a by-product of our batching method, we

can further reduce the overall comparison time. After a worker simulates the observations

for a group of alternatives, we can additionally request the worker to find the alternative

with the largest W−
j (t) within the group and report this local “best” alternative together

with the simulation results to the master. Then, the master only needs to compare all m

local “best” alternatives to decide the unique “best” alternative i∗− and afterward return

each worker alternative i∗− to conduct eliminations. Notice that finding the unique “best”

alternative requires O(k/m) operations in each worker and O(m) operations in the master,

and comparing a local set of alternatives with the unique “best” alternative needs another

O(k/m) operations in a worker. Therefore, the overall comparison time at each round

reduces from O(k) to O(k/m+m) in this situation.

5. Boosting the Selection at the Final Stage

As the selection process continues, fewer and fewer alternatives are left. All these sur-

viving alternatives tend to be “good” alternatives with similar means. In this situation,

with a small increment on the number of observations, it becomes increasingly difficult to

eliminate alternatives. Then, conducting comparisons every time that each surviving alter-

native takes an additional observation becomes less efficient. Moreover, when the number

of surviving alternatives is less than the number of workers in the parallel computing envi-

ronment, maintaining the fully sequential selection structure can lead to processor idling

because each worker on average handles the simulation for less than one alternative at

each round. To avoid this issue, in this paper, when only m alternatives are left, we sug-

gest sampling every surviving alternative to the maximal number of observations it can
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Zij (t)

0
t

NKN

g′ (t)

−g′ (t)

Figure 3 Continuation region of the KN procedure.

take, i.e., maxi∈KNi, and each worker handles the simulations for one alternative. After

the simulations, we simply pick the alternative with the largest sample mean as the best.

Though this modification is very intuitive, it changes the selection structure of a fully

sequential procedure, and thus may affect the statistical validity of the procedure. For

example, for the comparison between two alternatives in the KN procedure, the procedure

allows the user to take multiple observations for each alternative at a time. However,

the number of observations can only depend on their own partial sum difference process

through its values in previous periods (see Lemma 2 of Hong (2006) and Jennison et al.

(1980)). As in our case, the start of the final-stage depends on how many alternatives

are left (i.e., all other partial sum difference processes). The statistical validity of the KN

procedure may fail in this situation.

To better illustrate our point, consider the comparison between two alternatives i and

j where µi − µj = −δ. In Figure 3, we plot a sample path of the partial sum difference

process {Zij(t) : t= 1,2, . . .} between the two alternatives. Notice that the grey area formed

by g′(t) and −g′(t) is the continuation region of the KN procedure given that the IZ

parameter is δ and the PICS is α. The continuation region ends at NKN. Let Υ denote the

continuation region and ts, for s= 1,2, . . ., denote the sth time point where we observe the

value of partial sum difference and compare it with the continuation region. We further

let T = {ts : s = 1,2, . . . and ts ≤ dNKNe}. The difference ts − ts−1 represents the number

of observations we decide to take for each alternative at time point ts−1. The continuation
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region of the KN procedure ensures that if ts only depends on Zij(t) through its values in

period [0, ts−1] and T = inf{t∈ T :Zij(t) /∈Υ}, then

P (Zij (T)≥ 0)≤ α

k− 1
.

Notice that the condition on ts is crucial here. If ts depends on other random processes, the

inequality above may no longer hold. For example, if there exists another random process

Z ′ij(t) such that Z ′ij(t) is dNKNe time steps ahead of Zij(t), i.e., Z ′ij(t) = Zij (t+ dNKNe),

then at t= 0 by referring to the process Z ′ij(t) in the period t∈ [−dNKNe ,0], we can set

T ′1 =
{
t : t= 1,2, . . . , Z ′ij(t−dNKNe)≥ g′(t), and t < dNKNe

}
,

and T ′ = T ′1 ∪{dNKNe}. In this situation, if T′ = inf{t∈ T ′ :Zij(t) /∈Υ}, then based on the

definition of T ′, one can easily show that

P (Zij (T′)≥ 0) = P

({
sup

t=1,2,...,dNKNe−1

Zij (t)≥ g′(t)
}⋃{

Zij (dNKNe)≥ 0

})
(13)

≥ P (Zij (T)≥ 0) .

The inequality holds because by definitions, P (Zij (T)≥ 0) is upper bounded by the prob-

ability that the random process {Zij(t) : 1≤ t≤ dNKNe} ever exits the continuation region

from the upper decision boundary g′(t), i.e., the probability of the first event on the right-

hand side of (13). Therefore, it is unclear whether P (Zij (T′)≥ 0) is still upper bounded

by α/(k − 1). The continuation region of the KN procedure can no longer provide any

statistical guarantee for the partial sum difference process {Zij(t) : t∈ T ′} in this situation.

As we will later show, the statistical validity of Paulson’s procedure will not be affected

after we make this modification.

6. New Procedure and Statistical Analysis

In this section, we first present our parallel fully sequential procedure, called the parallelized

Paulson’s Procedure (PPP), followed by a validation of its statistical guarantee.

6.1. The Procedure

In what follows, we provide detailed description of our procedure. In the descriptions, we let

(M) denote the jobs that are completed by the master and (W) denote the jobs that are

completed by workers. Notice that when the master and the workers exchange information
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about an alternative, it contains the first-stage sample variance, the most updated sample

average, and the sample size of the alternative. Also, for every worker, after an iteration,

it will free up its memory and no information will be stored.

The Parallelized Paulson’s Procedure (PPP)

Step 1. (Input): Select the desired PCS 1−α (0<α< 1− 1/k). Set the IZ parameter

δ > 0, first-stage sample size n0 ≥ 2, λ (0<λ< δ), and number of workers m≥ 1. Let

h2 =
n0− 1

4 (δ−λ)
×

[(
α

k− 1

)− 2
n0−1

− 1

]
.

Step 2. (Initialization): Let I = {1,2, . . . , k} be the set of alternatives in contention.

(M) Let Is be the set of alternatives assigned to worker s for s= 1,2, . . . ,m. Equally

allocate all k alternatives to m workers so that each worker handles the first-stage

simulations for approximately k/m alternatives, e.g., an allocation rule could be:

for i= 1,2, . . . , k, do

I(i mod m)+1 = I(i mod m)+1
⋃
{i} .

(W) For worker s= 1,2, . . . ,m, simulate n0 observations for each alternative i∈ Is and

compute

S2
i =

1

n0− 1

n0∑
`=1

[
Xi,`− X̄i (n0)

]2
,

i∗n0,s
= arg max

i∈Is
W−

i (n0) ,

where i∗t,s denote the local “best” alternative at time t in worker s. Then, report the

results back to the master.

(M) Upon receiving the simulation results from all workers, set t= n0.

Step 3. (Screening):

(M) Let

i∗− = arg max
i∈{i∗t,1,...,i∗t,m}

W−
i (t) ,

and return i∗− to all workers.

(W) For worker s= 1,2, . . . ,m, set Isold = Is, let

Is =
{
i : i∈ Isold and W+

i (t)≥W−
i∗−

(t) +λt
}
, (14)

and report Is back to the master.
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(M) Upon receiving the comparison results, let

I =
⋃

s=1,2,...m

Is.

If i∗− /∈ I, let I = I ∪ {i∗−}. Compute

Nmax = max
j,i∈I,j 6=i

⌊
h2
(
S2
i +S2

j

)
λ

⌋
+ 1.

Step 4. (Stopping Rule):

a. If |I| ≤m,

i. If |I|> 1,

(W) For worker s= 1,2, . . . , |I|, simulate one alternative in I to the largest

sample size Nmax.

(M) Retrieve the simulation results from all workers and pick the alterna-

tive with the largest X̄i (Nmax) in I as the best.

ii. If |I|= 1,

(M) Select the alternative in I as the best.

b. Else if t=Nmax,

(M) Stop and select the alternative whose index is in I having the largest X̄i (t)

as the best.

c. Otherwise,

(M) Equally assign the alternatives in I to sets Is for s= 1,2, . . . ,m. Set t=

t+ 1.

(W) For each worker s= 1,2, . . . ,m, take one additional observation Xi,t from

each alternative i∈ Is, find the i∗t,s, and report the results back to the master.

Then, go to Screening.

Notice that when the communication cost is relatively high and the number of surviving

alternatives is not very large, in Step 3, one may conduct the screening process solely on

the master rather than distribute the screening tasks to the workers. Also, in Step 4.a.i,

the procedure simulates every surviving alternative to the maximal number. In practice, it

can be the case that after the last screening process, there are fewer than m alternatives

rather than exactly m alternatives left in Step 4.a.i. For this case, we only use |I| work-

ers to simulate observations for the leftover alternatives. This can cause processor idling.
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However, as we previously mentioned, when only a few alternatives are left, the number

of surviving alternatives decreases very slowly. It suggests that once |I| falls below m, the

difference between m and |I| is not large. So the number of idle processors is not large in

this situation. In PPP, because we do not assume any prior knowledge on the expected

simulation times of an observation for different alternatives, we choose to randomly assign

alternatives to workers in Step 4.c. In practice, the expected time needed to simulate

an observation may vary from one alternative to another and the user may have some

foreknowledge on it, e.g., estimating it at the beginning of the selection process. In this

situation, one can incorporate this piece of information in the allocation rule in Step 4.c

to achieve a better load balancing among workers.

6.2. Statistical Validity

To prove that PPP is statistically valid, we first summarize the hitting probability for a

partial sum process as follows.

Lemma 1 (Paulson (1964)). Suppose {Y1, Y2, . . .} is a sequence of i.i.d. normal ran-

dom variables with mean ∆< 0 and variance σ2
Y . For a positive constant a> 0, we have,

P

(
n∑
i=1

Yi >a for some n<∞

)
≤ e2∆a/σ2

Y .

With the results in Lemma 1, we can proceed our analysis on the statistical validity of

PPP. In Theorem 2, we first show that PPP can satisfy the PCS guarantee.

Theorem 2. If the means of the alternatives are in ascending order, there exists an

optimality gap δ > 0, between the means of the best alternative and all other alternatives,

i.e., µ1 ≤ µ2 ≤ · · · ≤ µk − δ., and the observations generated by different alternatives are

independent, then PPP can select alternative k with probability at least 1−α.

Proof. To show the results, we first decompose the problem of selecting the unique

best alternative k into k− 1 subproblems in which alternative k competes with all other

alternatives.

P (select alternative (alt.) k) = P (alt. 1,2, . . . , k− 1 are eliminated)

≥ P

(
k−1⋂
i=1

{alt. k eliminates alt. i}

)

≥ 1−
k−1∑
i=1

P (alt. i eliminates alt. k) . (15)
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Then, we focus on analyzing the probability that alternative k is falsely eliminated by

each alternative i = 1,2, . . . , k − 1. For the comparison between alternatives i and k, let

N < Nmax denote the random time point where the procedure switches to simulate a

batch of observations for each surviving alternative to the maximal number, i.e., the time

point where Step 4.a is initiated. Notice that for n0 ≤ t ≤N, the procedure compares

the partial sum difference between alternatives i and k with the continuation region to

make elimination decisions. Once t >N, the procedure directly samples the alternatives

to the maximal number of observations Nmax and compares the sample means to make

elimination decisions. Thus, we can write down the false elimination probability between

alternatives i and k as follows,

P (alt. i eliminates alt. k)

≤ P
({

max
n0≤t≤N

[Zik (t) +λt]≥ h2
(
S2
i +S2

k

)}⋃{
Zik (Nmax)≥ 0

})
≤ P

({
max

n0≤t<Nmax

[Zik (t) +λt]≥ h2
(
S2
i +S2

k

)}⋃{
Zik (Nmax)≥ 0

})
≤ P

(
max

n0≤t≤Nmax

[Zik (t) +λt]≥ h2
(
S2
i +S2

k

))
= P

(
max

n0≤t≤Nmax

t∑
`=1

(Xi,`−Xk,` +λ)≥ h2
(
S2
i +S2

k

))
, (16)

where the second inequality holds because N<Nmax, and the third inequality holds because

by the definition of Nmax, X̄i(Nmax) ≥ X̄k(Nmax) implies Nmax[X̄i(Nmax) − X̄k(Nmax)] ≥
h2(S2

i +S2
k)−λNmax. Notice that for `= 1,2, . . . , t, Xi,`−Xk,` +λ are i.i.d. normal random

variables with mean µi−µk+λ< 0 and variance σ2
i +σ2

k, and for t≥ n0,
∑t

`=1(Xi,`−Xk,`+

λ) is independent of S2
i and S2

k . Then we can rewrite Equation (16) as,

(16) = E

[
P

(
max

n0≤t≤Nmax

t∑
`=1

(Xi,`−Xk,` +λ)≥ h2
(
S2
i +S2

k

)∣∣∣∣∣S2
i , S

2
k

)]

≤ E

[
P

(
t∑

`=1

(Xi,`−Xk,` +λ)≥ h2
(
S2
i +S2

k

)
for some t <∞

∣∣∣∣∣S2
i , S

2
k

)]

≤ E
[
exp

(
2 (µi−µk +λ)h2 (S2

i +S2
k)

σ2
i +σ2

k

)]
(by Lemma 1)

≤ E
[
exp

(
2 (λ− δ)h2 (S2

i +S2
k)

σ2
i +σ2

k

)]
= E

[
exp

(
2 (λ− δ)h2 σ2

i

σ2
i +σ2

k

S2
i

σ2
i

)]
E
[
exp

(
2 (λ− δ)h2 σ2

k

σ2
i +σ2

k

S2
k

σ2
k

)]
. (17)
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Notice that Lemma 1 is applied to get the third equation, the second-to-last equation

holds because µi ≤ µk − δ, and the last equality holds because the observations generated

by alternatives i and k are independent. Since both random variables (n0 − 1)S2
i /σ

2
i and

(n0 − 1)S2
k/σ

2
k follow χ2 distribution with n0 − 1 degrees of freedom. Using the moment

generating function of the χ2 random variable, and also the definition of h2, Equation (17)

can be rephrased to,

(17) =

(
1 + 4

(δ−λ)h2

n0− 1

σ2
i

σ2
i +σ2

k

)−n0−1
2

×
(

1 + 4
(δ−λ)h2

n0− 1

σ2
k

σ2
i +σ2

k

)−n0−1
2

≤
(

1 + 4
(δ−λ)h2

n0− 1

)−n0−1
2

=
α

k− 1
. (18)

Plug in the result in (18) to (15), it yields,

P (select alt. k)≥ 1−
k−1∑
i=1

P (alt. i eliminates alt. k)≥ 1−α.

It concludes the proof. �

6.3. PPP with PAC Guarantee

We are aware that as pointed out by Ni et al. (2017), when the number of alternatives gets

large, the IZ formulation may become questionable because it is difficult to ensure that the

mean of the best alternative is at least δ larger than that of the second best. Indeed, there

may exist multiple alternatives whose means lie within δ to the mean of the best. Then,

the IZ assumption no longer holds. To address the issue, Ni et al. (2017) use a selection

guarantee which requires the procedures to select an alternative which lies within δ to the

best with the predefined probability even when the IZ assumption is violated, i.e.,

P (µk−µI ≤ δ)≥ 1−α,

where I is the index of the alternative that the procedure terminates with. It is called the

probably approximately correct (PAC) guarantee. Notice that the PAC guarantee makes no

assumptions on the configuration of the means and is stronger than the PCS guarantee.

For many fully sequential procedures which satisfy the PCS guarantee, it remains an open

question as to whether they satisfy the PAC guarantee. However, as shown by Kao and

Lai (1980), with a slight modification, i.e., changing the screening process in (1) to,

I =
{
i : i∈ Iold and Zij (t)≥−h2S2

ij − (δ−λ) t,∀j ∈ Iold, j 6= i
}
,
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Paulson’s procedure can satisfy the PAC guarantee. Because our parallel procedure is built

upon Paulson’s procedure, in Theorem 3 below, we show that the same modification is

applicable to our parallel procedure as well, and the proof is provided in the Appendix.

Theorem 3. If the means of the alternatives are in ascending order, i.e., µ1 ≤ µ2 ≤

· · · ≤ µk, and the screening process (14) in PPP is changed to

Is =
{
i : i∈ Isold and W+

i (t)≥W−
i∗−

(t)− (δ−λ) t
}
, (19)

then PPP can guarantee that,

P (µk−µI ≤ δ)≥ 1−α,

where I is the index of the alternative that is finally selected.

Notice that in order to satisfy the PAC guarantee, the screening process (19) essentially

bumps out the continuation region of PPP by δ · t. After the modification, the procedure’s

continuation region is uniformly larger than that of PPP and the procedure requires more

observations to eliminate alternatives. There is an efficiency loss on the total sample size.

In the rest of this paper, we call the procedure using the screening process (19) as PAC-

PPP. We close this section with a remark that even though there is no rigorous proof

showing that existing fully sequential procedures, which satisfy the PCS guarantee, also

theoretically satisfy the PAC guarantee, in practice, when the IZ assumption is violated,

they do deliver the PAC guarantee, e.g., Luo et al. (2015).

7. Numerical Experiments

In this section, we test the performance of our procedures and some existing R&S proce-

dures. The goals of the numerical studies are as follows. First, we show that compared to

traditional fully sequential procedures, our procedures indeed can significantly reduce the

comparison time while keeping the total sample size roughly unchanged. Second, with a

real simulation problem, we demonstrate that the batching method is preferred over the

one-by-one task assignment scheme when the network latency is high. We also show that

our parallel procedure is very competitive with some existing parallel R&S procedures,

including the Vector-filling KN (VKN) procedure of Luo et al. (2015), the Good Selection

Procedure (GSP) of Ni et al. (2017), and the Parallel Survivor Selection (PSS) procedure

of Pei et al. (2018).
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For the numerical experiments listed in this section, when the procedures are imple-

mented in a single-processor computing environment, the programming language is Java.

When parallel computing is used, the underlying parallel computing platform is Message

Passing Interface (MPI) and the default programming language is C++. MPI is considered

as one of the most efficient parallel computing platforms. It allows direct communications

between any two processors, and the users to customize and optimize the implementa-

tion of a parallel procedure from low-level. In this paper, the implementation of MPI is

MPICH-3.3.2 which can be downloaded from https://www.mpich.org/. For all the pro-

cedures implemented in this section, the desired PICS α and IZ parameter δ are set to

be 0.05 and 0.1 respectively. To estimate the variance of each alternative, by default, the

first-stage sample size n0 is set to be 50. All the codes used in this section can be retrieved

from https://github.com/biazhong/PPP.

7.1. Normal Observation Test Problems

In this subsection, we use a simple example where all alternatives draw observations from

normal distributions to test the performance of PPP and two classical fully sequential

procedures, Paulson’s procedure and the KN procedure, in a single-processor computing

environment. Particularly, we conduct the experiment on a local PC with Intel Core i7-3770

CPU (4 processors)2, 8 GB memory, and Linux Ubuntu 16.04 LTS operating system. In a

single-processor computing environment, the only difference between PPP and Paulson’s

procedure is the screening process used at each round, i.e., PPP uses the screening process

(14) and Paulson’s procedure uses the screening process (1). For the test problems, we

consider the slippage configuration of the means, i.e., µ1 = µ2 = · · · = µk−1 = µk − δ = 0.

This mean configuration is often treated as the most difficult setting in R&S literature.

All alternatives share a common but unknown variance 0.25, i.e., σ2
1 = σ2

2 = · · ·= σ2
k = 0.25.

For PPP and Paulson’s procedure, the user-specified parameter λ is set to be δ/2, and for

the KN procedure, the user-specified parameter c is set to be 1. We test the performance

of all three procedures with the number of alternatives k= a× 102, where a= 1,2, . . . ,10.

In Figure 4, based on 1,000 independent macro-replications we report total sample sizes,

and wall-clock times of the three procedures as they solve these problems.

2 Only 1 processor is used in this experiment.
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Figure 4 Comparisons of PPP, Paulson’s procedure, and the KN procedure.

According to the results, we have three findings. First, all three procedures over-deliver

PCS in this experiment. This is because, while developing these procedures, some con-

servative inequalities are used, e.g., Bonferroni’s inequality. As a result, these procedures

often require more observations than necessary. Second, in terms of the total sample size,

the KN procedure is the most efficient procedure while PPP is the least efficient procedure

among these three procedures. Even though PPP requires more observations to identify

the best than the other two procedures, in general, the difference is not very large and is

tolerable. Third, because generating a normal random observation takes almost no time

and there is no communication cost in a single processor, in this experiment, the wall-clock

times reflect the actual comparison times of these three procedures. From Figure 4(c), we

can conclude that the comparison times of Paulson’s procedure and the KN procedure

grow in quadratic-like rates, and they grow much faster than that of PPP does.
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Figure 5 The average wall-clock time of PPP.

To further investigate the exact growth rate of the comparison time of PPP, we separately

let PPP solve larger scale problems where k = a× 103 and a = 1,2, . . . ,20. We plot the

wall-clock times as PPP solves these problems in Figure 5.

From Figure 5, we observe that being different from those of Paulson’s procedure and

the KN procedure, the comparison time of PPP appears to grow linearly in k. This is

consistent with our theoretical analysis that PPP can reduce the computational complexity

of comparisons and thus the comparison time significantly when the number of alternatives

is large. It is also worthwhile noting that, from the results in Figure 4(c) and Figure 5, we

observe that, for this particular example, the wall-clock time that PPP takes to solve a

problem with 20,000 alternatives is about the same as the wall-clock times that Paulson’s

procedure and the KN procedure require to solve the problem with 1,000 alternatives. It

suggests that PPP indeed has the potential to solve large-scale problems.

7.2. Three-stage Buffer Allocation Problems

In this subsection, we test the performance of our procedures and some existing parallel

procedures with the three-stage buffer allocation problem of Buzacott and Shanthikumar

(1993). This problem is considered as a practical simulation testing problem, which has

already been included in the simulation optimization library of Henderson and Pasupathy

(2014) (http://simopt.org), and also been studied in the existing parallel R&S papers,

i.e., Luo et al. (2015) and Ni et al. (2017).

The problem considers a flowline with three stations 1, 2, and 3. There is an infinite

number of jobs waiting in front of station 1. Each job will be sequentially processed by the
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Table 1 Summary of three-stage buffer allocation problems.

Configuration Number of alternatives Highest mean Number of alternatives

(R,B) k µk within [µk− δ,µk]

(20,20) 3,249 5.78 21

(50,50) 57,624 15.70 43

(128,128) 1,016,127 41.66 97

three stations (from station 1 to station 3). The service times of processing jobs at station

i, where i = 1,2,3, are independently and exponentially distributed with service rate xi.

In front of stations 2 and 3, there are buffers of capacities x4 and x5, respectively. If the

buffer in front of station i, where i = 2,3, is full, the upstream station i− 1 is blocked.

At this time, the finished job in station i− 1 cannot be released, and the station cannot

process new jobs. The service times and the buffer capacities are assumed to be positive

integers and constrained by x1 + x2 + x3 = R and x4 + x5 = B, where R and B are two

pre-specified positive integers. By setting different values to R and B, there are different

numbers of feasible solutions (alternatives) to the problem. Our goal is to find an optimal

allocation of service rates and buffer capacities such that the steady-state throughput of the

flowline is maximized. While applying R&S procedures to solve this problem, we observe

the random throughputs of a feasible solution by conducting simulation experiments. For

each simulation experiment, after a warm-up period of releasing 2,000 jobs, we observe

the throughput of subsequent 50 jobs. Notice that in this subsection, the observations

generated by different alternatives are not normally distributed.

In the following experiments, we consider three different combinations of the values

for R and B. They correspond to small-, medium-, and large-scale R&S problems. We

summarize the detailed information about the problems in Table 1. Notice that because

this flowline system can be alternatively viewed as a continuous-time Markov chain and for

this example, the service times are exponentially distributed, we can analytically calculate

the expected throughput of each feasible solution by solving the balance equations for the

underlying Markov chain from Buzacott and Shanthikumar (1993). Thus, we are able to

provide some detailed information on these problems in Table 1.3

3 Recall that we set δ= 0.1 throughout this section.
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7.2.1. A Comparison of Two Task Assignment Schemes. Before comparing our pro-

cedures with other parallel R&S procedures, we first take the problem with 57,624 alterna-

tives as an example to examine the wall-clock times for the two task assignment schemes

discussed in Section 4, i.e., one-by-one and batching of alternatives, required to generate

one round of observations. We conduct the experiment on two local PCs, which are the

same as the one in the previous experiment and connected via the Internet. We use four

processors to run the simulation experiments and consider two different settings of the

processors: (1) all four processors are located in the same PC; (2) the master processor

and the other three processors are located separately in two PCs. These two different set-

tings represent two levels of communication cost between the master and the workers. The

one-way network latencies between the master and a worker, i.e., tc, in the first setting and

the second setting are about 0.013ms and 2.2ms, respectively. The communication cost in

the second setting is much higher than that of the first setting. In this experiment, the

average time needed to generate one observation in a worker, i.e., θ, is about 1ms. In order

to test how the variations in simulation times may affect the performance of the two task

assignment schemes, after a worker simulates an observation, we pause it for some time

κ. We consider three different settings for the pause time κ: (1) κ= 1ms; (2) κ is sampled

from a uniform distribution with mean 1ms and width 1ms, i.e., κ∼Unif (0.5ms,1.5ms);

(3) κ∼Unif (0ms,2ms). These three settings represent different levels of variability in sim-

ulation times. In Table 2, based on 100 independent macro-replications, we report the

average wall-clock times the two task assignment schemes require to generate one round

of observations and their 95% confidence intervals under different settings.

Table 2 A comparison of wall-clock times (sec) of generating one round of observations for the problem with

57,624 alternatives between one-by-one and batching using 4 processors.

Pause time, κ
Processors in one PC Processors in two PCs

One-by-one Batching One-by-one Batching

κ= 1ms 33.32± 0.01 33.30± 0.01 111.17± 0.23 33.64± 0.01

κ∼Unif (0.5ms,1.5ms) 33.36± 0.01 33.33± 0.01 110.86± 0.41 33.87± 0.01

κ∼Unif (0ms,2ms) 33.34± 0.01 33.49± 0.01 111.66± 0.40 34.04± 0.01

We highlight the main findings from this experiment as follows. First, when the pro-

cessors are in the same PC, the communication time between the master and workers is
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relatively small compared to the simulation time. Therefore, the wall-clock times that the

two task assignment schemes require to generate one round of observations are roughly

the same. Second, the performance of the one-by-one task assignment scheme depends

heavily on the network latency. When the processors are spread across two PCs, it uses

significantly more wall-clock time to generate observations than it does for the case where

the processors are in the same PC. Meanwhile, for the batching method, we only observe

a slight increase on the wall-clock time as we allocate the master and workers in different

PCs. This verifies our analysis in Section 4.3. Third, comparing the results in different

columns, it seems that, in this example, the variations in simulation times do not affect

the performance of the two task assignment schemes significantly. For the one-by-one task

assignment scheme, because it can always finely balance the workloads of different pro-

cessors, the impact of variability in simulation times is limited. For the batching method,

even though the time needed to simulate a single observation may vary significantly, due

to the large batch size, the average times needed to simulate an observation in different

workers are roughly the same. In this situation, the variability in simulation times would

not affect the performance of the method too much either.

7.2.2. Solving the Problem with 3,249 Alternatives. We conduct experiments on a

local server to test the performance of our procedures and some existing parallel R&S

procedures. Specifically, the local server has 48 processors, 128 GB of memory, and Red Hat

Enterprise Linux (RHEL) 7.4 operating system, and we compare PPP and PAC-PPP with

the VKN procedure of Luo et al. (2015), GSP of Ni et al. (2017), and the PSS procedure

of Pei et al. (2018):

• The VKN procedure is a variant of the KN procedure in parallel computing environ-

ments and considered to be the earliest parallel R&S procedure. The procedure inherits

all selection features as well as the statistical validity from the KN procedure. It can

be thought as a direct implementation of the KN procedure in parallel computing

environments. Because the procedure requires one to store every individual simulation

output and the first-stage sample variance of the partial sum difference between any

two alternatives, the procedure needs a large amount of memory in practice. There-

fore, it is difficult to deploy the procedure at scale and use it to solve very large-scale

problems. For example, to solve the problem with 57,624 alternatives, storing the first-

stage sample variances as the double data type alone would cost more than 20 GB

memory.
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• GSP is the first parallel R&S procedure that can be used to solve large-scale prob-

lems with over a million alternatives. It significantly improves the performance of a

fully sequential procedure in parallel computing environments by using the strategies

of “divide-and-conquer” to reduce the computational complexity of comparisons at

each round and “batching the observations from the same alternative” to reduce the

communication time. Also, different from the VKN procedure, GSP can theoretically

satisfy the stronger PAC guarantee while solving large-scale R&S problems. At the

beginning of the selection process, GSP requires the user to specify the batch size β

of observations that each alternative can take at a time and the maximum number

of rounds r̄ that the screening process is conducted. While implementing GSP in this

paper, we set (β, r̄) = (100,10) and (β, r̄) = (200,5) as recommended by the authors.

• The PSS procedure is a recently developed parallel procedure. Compared to existing

parallel R&S procedures, it has a different scope. It provides an expected false elimi-

nation rate (EFER) guarantee upon stopping and can be used with various stopping

conditions. In this paper, we consider the fixed-budget setting for the procedure, i.e.,

while conducting the selection, the total computational budget (total sample size) is

fixed. Under the fixed budget setting, the procedure aims to deliver a subset of alterna-

tives which contains the best alternative when the computational budget is consumed.

The procedure requires one to input the mean performance of the best alternative and

the computational budget at the beginning of the selection process. In order to make

the procedure comparable with our procedures, while solving a problem, we first use

PAC-PPP to solve the problem. Then, according to the results of PAC-PPP, we set the

total sample size of the PSS procedure to be roughly the same as that of PAC-PPP.

For the procedure, we additionally set the number of observations that each alterna-

tive can take at a time to be 10 as recommended by the authors, and the EFER to be

0.05.

We first use all the procedures listed above to solve the problem with 3,249 alternatives.

In this experiment, we do not pause a worker after it simulates an observation. Based on

100 independent macro-replications, we examine the wall-clock time, the total simulation

time, and the total comparison time of each procedure and their 95% confidence intervals.

Note that the total simulation time and the total comparison time of a procedure are the

simulation time and the comparison time summed across all processors. Because the IZ
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Table 3 A comparison of PPP (λ= δ/2) and PAC-PPP (λ= δ/2) with other parallel R&S procedures using

the configuration: k= 3,249 alternatives on 48 processors.

Procedure PAC
Total sample Wall-clock Total simulation Total comparison

Utilization
size (×105) time (×10 sec) time (×102 sec) time (×10−3 sec)

PPP 1.00 4.04± 0.03 1.74± 0.02 7.73± 0.06 4.27± 0.06 94.36%

PAC-PPP 1.00 4.18± 0.04 1.80± 0.02 8.00± 0.05 5.14± 0.08 94.82%

VKN 1.00 2.12± 0.08 2.63± 0.01 4.09± 0.02 16,750± 40 33.11%

GSP (β = 100) 1.00 4.68± 0.06 2.28± 0.01 9.26± 0.07 14.68± 0.16 86.45%

GSP (β = 200) 1.00 6.53± 0.08 2.95± 0.01 12.37± 0.09 13.59± 0.15 89.10%

PSS 0.99 4.20± 0.00 2.80± 0.02 8.13± 0.02 4.12± 0.02 61.82%

assumption is violated in this problem, instead of reporting the PCS, we focus on estimating

the PAC probabilities of different procedures. Furthermore, because the PSS procedure

returns a subset of alternatives upon stopping, while reporting the PAC probability of the

procedure, we report the proportion of the alternatives whose mean are within δ to the

best alternative. Also, in this example, we set the total sample size of the PSS procedure

to be 4.2× 105 which is roughly the same as that of PAC-PPP. Lastly, as a measure of

a procedure’s efficiency in parallel computing environments, we calculate the utilization,

where

Utilization =
Total simulation time

Wall-clock time×Number of workers
,

for each procedure. We report the results in Table 3.

From the results in Table 3, we may draw following conclusions. First, in this experi-

ment, all procedures numerically demonstrate the ability to select an alternative within δ

of the best, although only PAC-PPP and GSP can theoretically satisfy the PAC guaran-

tee. Second, the VKN procedure uses the smallest amount of observations to conduct the

selection. However, the procedure’s utilization is low due to the long comparison time. It

suggests that in parallel computing environments, the total sample size is no longer the

only criterion to measure the performance of a procedure. Third, besides the VKN pro-

cedure, the utilization of the PSS procedure is not satisfactory as well. The main reason

is that for the PSS procedure, once the number of surviving alternatives falls below the

number of workers in the parallel computing environments, there are more and more work-

ers staying idle. In the meantime, when only a few alternatives are left in this example,

these alternatives tend to be very good alternatives. It becomes increasingly difficult to
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eliminate alternatives. Therefore, many workers would stay idle for a relatively long time,

and it leads to a low utilization. Fourth, in terms of the wall-clock time and the total

sample size, we may conclude that PPP and PAC-PPP perform relatively well compared

to the other procedures.

Because among all the procedures, only PAC-PPP and GSP can theoretically satisfy the

PAC guarantee which is more suitable for large-scale problems, in the remaining experi-

ments, we focus on comparing these two procedures. Then, we test the wall-clock times

that PAC-PPP and GSP require to solve the small-scale problem as different numbers of

processors in the local server are used. Based on 100 independent macro-replications, we

report the results in Figure 6.
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Figure 6 A comparison between PAC-PPP (λ= δ/2) and GSP using the configuration: k = 3,249 on different

number of processors.

From Figure 6, we find that, in general, PAC-PPP requires less wall-clock time to solve

the problem than GSP does under all settings. However, for both procedures, after the

number of processors exceeds 24, as more processors are added to the parallel computing

environment, we hardly observe any decrease on the wall-clock time as expected. A possible

reason is that, in this experiment, the total computing resource, e.g., the memory, of the

local server is limited. As more processors are running, the average amount of computing

resource assigned to each processor decreases. As a result, more time is needed for a proces-

sor to simulate an observation. Even though there are more workers, the total simulation

time that all workers require to simulate a fixed number of observations becomes larger.

Therefore, after the number of processors exceeds a threshold, by simply adding more
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Table 4 Testing the performance of PAC-PPP (λ= δ/2) with random simulation times using the

configuration: k= 3,249 alternatives on 48 processors.

Pause time, κ
Total sample Wall-clock Total simulation Total comparison

Utilization
size (×105) time (×10 sec) time (×103 sec) time (×10−3 sec)

κ= 1ms 4.20± 0.05 2.69± 0.03 1.18± 0.01 5.21± 0.13 93.27%

κ∼Unif (0.5ms,1.5ms) 4.21± 0.04 2.74± 0.03 1.20± 0.01 5.14± 0.13 93.14%

κ∼Unif (0ms,2ms) 4.20± 0.05 2.78± 0.03 1.20± 0.01 5.17± 0.12 91.75%

processors, it may not help the procedures reduce the wall-clock times. In fact, to verify

this assumption, we add another identical server to the parallel computing environment

and run the instance of 48 processors again. In the new setting, 24 processors are used for

each server. Compared to the original setting (48 processors are in the same server), we

observe that in the new setting, the wall-clock times for PAC-PPP, GSP (β = 100), and

GSP (β = 200) indeed decrease from 17.95, 22.78, and 29.54 seconds to 12.79, 15.89, and

19.35 seconds respectively.

Next, we conduct an additional experiment for PAC-PPP to test its robustness to ran-

dom simulation times. Specifically, we use PAC-PPP to solve the problem under the three

settings for the pause time as we considered in Section 7.2.1. We summarize the results

and their 95% confidence intervals in Table 4.4 Because we only run 50 macro-replications

for each instance, we do not include the estimated PAC probability in the table.

From Table 4, we can observe that as the variability in simulation times increases, the

procedure’s utilization decreases and the procedure spends more time on finding the best

alternative. In general, the difference in wall-clock times among the three instances is not

much and we think it is tolerable.

7.2.3. Solving the Problem with 57,624 Alternatives. With the same local server as

that in the previous experiment, in this experiment, we try to use PAC-PPP and GSP to

solve the problem with 57,624 alternatives. Because the two procedures can always select

an alternative within δ of the best alternative, in the rest of this section, we no longer

report the estimated PAC probability. In this experiment, we do not pause a worker after it

simulates an observation, and for each instance, we run 10 independent macro-replications.

We summarize the results and their 95% confidence intervals in Table 5.

4 In Table 4, the pause time is included in the simulation time.
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Table 5 A Comparison between PAC-PPP (λ= δ/2) and GSP using the configuration: k= 57,624

alternatives on 48 processors.

k Procedure
Total sample Wall-clock Total simulation Total comparison

Utilization
size (×106) time (×102 sec) time (×103 sec) time (sec)

57,624

PAC-PPP 10.76± 0.15 4.47± 0.06 19.71± 0.29 0.5021± 0.016 93.77%

GSP (β = 100) 10.83± 0.10 4.65± 0.11 19.83± 0.21 3.7341± 0.005 90.67%

GSP (β = 200) 13.18± 0.11 5.68± 0.10 24.43± 0.23 3.6585± 0.005 91.44%

From Table 5, we can observe that the performance of PAC-PPP is significantly better

than that of GSP (β = 200) and slightly better than that of GSP (β = 100). One may

argue that combining the results in Table 3 and Table 5, for GSP, it seems that as we set

a smaller value for β, the procedure can use less wall-clock time and fewer observations to

solve the problem. However, it may not always be the case. As one keeps decreasing β, more

frequent comparisons are made. This can lead to a rapid increase on the comparison time,

and the procedure behaves more and more like the VKN procedure. In practice, without

any prior knowledge on the configuration of the means, it may be very hard to determine

the optimal value for β. It is interesting to point out that even though, in this experiment,

both procedures can still maintain the comparison time at a low level, compared to the

results in Table 3, we may conclude that the comparison time of PAC-PPP grows slower

than that of GSP does as the the problem size increases.

7.2.4. Solving the Problem with 1,016,127 Alternatives. Finally, we run PAC-PPP

and GSP to solve a large-scale problem. We conduct the experiment on two local servers,

which are the same as the one in previous experiments. Due to the long wall-clock time

of solving the problem, we only run 5 macro-replications for each procedure. We list the

results and their 95% confidence intervals in Table 6.

From Table 6, similar to what we have seen in the previous experiments, the performance

of PAC-PPP is better than that of GSP (β = 100) and GSP (β = 200). However, one

may observe that, compared to the results in Table 3 and Table 5, there is a decrease in

the utilization of PAC-PPP in Table 6. The main reason is that, for PAC-PPP, inferior

alternatives are sequentially eliminated and the batch size of alternatives keeps decreasing.

The batching method used in PAC-PPP behaves more and more like the one-by-one task

assignment scheme. Especially, in this experiment, the master and some workers are located

separately in two different servers. The communication cost between the master and these
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Table 6 Comparisons between PAC-PPP (λ= δ/2) and GSP using the configuration: k= 1,016,127

alternatives on 96 processors.

k Procedure
Total sample Wall-clock Total simulation Total comparison

Utilization
size (×108) time (×103 sec) time (×105 sec) time (×10 sec)

1,016,127

PAC-PPP 4.03± 0.08 8.92± 0.18 7.70± 0.15 3.02± 0.09 89.92%

GSP (β = 100) 4.28± 0.20 9.38± 0.37 8.28± 0.41 576.95± 1.35 92.97%

GSP (β = 200) 4.97± 0.15 1.09± 0.26 9.71± 0.25 566.85± 0.92 93.46%

workers is relatively high. It further lowers the utilization of the processors. To address this

issue, when the number of surviving alternatives falls below a threshhold, one may instruct

a worker to not only simulate observations for a batch of alternatives but also simulate a

batch of observations for each individual alternative. It may keep a worker simulating a

relatively large amount of observations at a time and increase the utilization. However, it

is at the expense of some efficiency loss on the total sample size.

8. Conclusions

In this paper, we make three modifications on the classical fully sequential procedure,

Paulson’s procedure, to speed up its selection process in parallel computing environments.

We show that if no CRNs are used, we can significantly reduce the computational com-

plexity of comparisons to the same order as that of the simulations. Then, the comparison

time becomes negligible compared to the simulation time and is no longer the bottleneck

of the procedure. Also, we demonstrate that by batching of different alternatives, we can

reduce the frequency of the communications and thus the communication time among

the processors. It helps the procedure further improve its efficiency. Finally, to boost the

selection process in the final-stage, once the number of surviving alternatives is less than

the number of workers, we suggest to sample all surviving alternatives to the maximal

number of observations they can take. We use several numerical experiments to show that

the modified procedure is more efficient compared with existing parallel procedures in the

literature.

Acknowledgments

The authors would like to thank the Area Editor, Prof. Bruno Tuffin, the Associate Editor, and two reviewers

for their insightful and detailed comments that have significantly improved this paper. This research was

supported in part by the Natural Science Foundation of China [Grants 71722006, 72031006 and 72072117].



Zhong et al.: Speeding Up Paulson’s Procedure Using Parallel Computing
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 39

References

Bechhofer RE (1954) A single-sample multiple decision procedure for ranking means of normal populations

with known variances. The Annals of Mathematical Statistics 25(1):16–39.

Buzacott JA, Shanthikumar JG (1993) Stochastic Models of Manufacturing Systems (Prentice Hall).

Chen CH, Chick SE, Lee LH, Pujowidianto NA (2015) Ranking and selection: Efficent simulation budget

allocation. Fu M, ed., Handbook of Simulation Optimization, 45–80 (Springer).

Chick SE (2006) Subjective probability and bayesian methodology. Henderson SG, Nelson BL, eds., Elsevier

Handbooks in Operations Research and Management Science: Simulation, 225–257 (Elsevier).

Henderson SG, Pasupathy R (2014) Simulation optimization library. http://www.simopt.org, [Online;

accessed 25-August-2019].

Hong LJ (2006) Fully sequential indifference-zone selection procedures with variance-dependent sampling.

Naval Research Logistics 53(5):464–476.

Hong LJ, Luo J, Zhong Y (2016) Speeding up pairwise comparisons for large scale ranking and selection.

Roeder TMK, Frazier PI, Szechtman R, Zhou E, Huschka T, Chick SE, eds., Proceedings of the 2016

Winter Simulation Conference, 749–757 (Piscataway, New Jersey: IEEE).

Hong LJ, Nelson BL, Xu J (2015) Discrete optimization via simulation. Fu M, ed., Handbook of Simulation

Optimization, 9–44 (Springer).

Jennison C, Johnstone IM, Turnbull BW (1980) Asymptotically optimal procedures for sequential adaptive

selection of the best of several normal means. Technical report, Department of Operations Research

and Industrial Engineering, Cornell University.

Kao SC, Lai TL (1980) Sequential selection procedures based on confidence sequences for normal populations.

Communications in Statistics-Theory and Methods 9(16):1657–1676.

Kim SH, Nelson BL (2001) A fully sequential procedure for indifference-zone selection in simulation. ACM

Transactions on Modeling and Computer Simulation 11(3):251–273.

Kim SH, Nelson BL (2006) Selecting the best system. Henderson SG, Nelson BL, eds., Elsevier Handbooks

in Operations Research and Management Science: Simulation, 501–534 (Elsevier).

Luo J, Hong LJ (2011) Large-scale ranking and selection using cloud computing. Jain S, Creasey RR,

Himmelspach J, White KP, Fu M, eds., Proceedings of the 2011 Winter Simulation Conference, 4051–

4061 (Piscataway, New Jersey: IEEE).

Luo J, Hong LJ, Nelson BL, Wu Y (2015) Fully sequential procedures for large-scale ranking-and-selection

problems in parallel computing environments. Operations Research 63(5):1177–1194.

Ma S, Henderson SG (2017) An efficient fully sequential selection procedure guaranteeing probably approx-

imately correct selection. Chan WKV, D’Ambrogio A, Zacharewicz G, Mustafee M, eds., Proceedings

of the 2017 Winter Simulation Conference, 2225–2236 (Piscataway, New Jersey: IEEE).



Zhong et al.: Speeding Up Paulson’s Procedure Using Parallel Computing
40 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Nelson BL, Swann J, Goldsman D, Song W (2001) Simple procedures for selecting the best simulated system

when the number of alternatives is large. Operations Research 49(6):950–963.

Ni EC, Ciocan DF, Henderson SG, Hunter SR (2017) Efficient ranking and selection in parallel computing

environments. Operations Research 65(3):821–836.

Paulson E (1964) A sequential procedure for selecting the population with the largest mean from k normal

populations. The Annals of Mathematical Statistics 35(1):174–180.

Pei L, Nelson BL, Hunter S (2018) A new framework for parallel ranking & selection using an adaptive

standard. Rabe M, Juan AA, Mustafee N, Skoogh A, Jain S, Johansson B, eds., Proceedings of the

2018 Winter Simulation Conference, 2201–2212 (Piscataway, New Jersey: IEEE).

Perng S, et al. (1969) A comparison of the asymptotic expected sample sizes of two sequential procedures

for ranking problem. The Annals of Mathematical Statistics 40(6):2198–2202.

Rinott Y (1978) On two-stage selection procedures and related probability-inequalities. Communications in

Statistics - Theory and Methods A7:799–811.


